3D распечатать на принтере: цена, технологии и материалы печати на 3Д-принтере

Печать ABS (АБС) пластиком по FDM технологии на заказ

Модели для печати из ABS-пластика на промышленных FDM-принтерах, пожалуйста, отправляйте на
[email protected],
т.к. стоимость печати рассчитывается индивидуально.

ABS-пластик (АБС, акрилонитрилбутадиенстирол) — ударопрочный термопластик, который
нашел широкое применение в промышленном и аддитивном производстве для
изготовления самых разных вещей. Напечатанные изделия выдерживают довольно
высокую температуру нагревания (около 100 ºС), имеют слегка шероховатую
поверхностью, отличаются долговечностью, влагостойкостью, прочностью и при этом
обладают небольшой эластичностью. 3Д печать из АБС пластика используют в
машиностроении, для производства прототипов и корпусов различных приборов, в
архитектурном проектировании, в медицине, в производстве сувениров, декоративных
элементов, пресс-форм и различных бытовых предметов.

ABS пластик токопроводящий FL 33 (кондуктивный) — прочный токопроводящий пластик,
состоящий из смеси полимерной смолы и углеродного волокна.
Главным отличием материала являются его антистатические свойства, которые позволяют печатать модели
и проводить через них электрический ток или использовать напечатанные детали
в качестве антистатического или электромагнитного экрана.
По своим прочностным и эксплуатационным характеристикам схож с простым ABS пластиком
для 3D-принтера, но обладает повышенной устойчивостью к ацетону, сохраняя свой первоначальный вид.
Также имеет более высокую теплопроводность. Антистатические добавки в составе пластика предотвращают
прилипание пыли к поверхности изделий. Уменьшение электроизоляции (увеличение электропроводности)
увеличивает срок службы электронных приборов, корпуса и детали которых напечатаны из кондуктивного
ABS пластика.

Дополнительные характеристики токопроводящего АБС пластика:
Сопротивление: 105 Ом/см3

Температура плавления: 210-250 С

Цвет: Черный

Услуги 3д печати, моделирования, прототипирования в Москве

Наши услуги

Услуги Лаборатории трехмерной печати разнообразны и включают все спектр работы с трехмерными технологиями. Конечно, всем известная и тема — это услуги 3d печати (Москва) могут начаться с идеи и предположения, что гипотетически можно реализовать проекты с помощью специального принтера. Но, практически всегда, от идеи до готового изделия есть несколько промежуточных шагов. 
Если ваша идея лишь в определенном образе и нет цифровой модели для исполнения, то в этом случае необходимо выполнить моделирование и разработать документацию. После чего создается прототип изделия. Это особенно важно, в изготовлении точных отдельных частей, сувенирной продукции и много другого поступающего к нам для дальнейшей услуги печати на 3d принтере. Именно по прототипу можно оценить совместимость с остальными компонентами, внешний вид, до того как началось массовое производство с использованием дорогостоящего оборудования и материалов. 3d прототипирование помогает избежать многих конструкторских недочетов, и также понимать эстетичность изделия, что особенно важно при изготовлении дизайнерских вещей. В этот момент можно внести правки и отредактировать проект.

3д моделирование (Москва) уникальных изделий должно включать промежуточный прототип. 
Иногда к нам обращаются с желанием размножить определенную деталь или предмет или же просто сделать копию. В этом случает печать 3d моделей в Москве, включает моделирование с предварительным сканированием специальным оборудованием, которое позволит перевести параметры объекта в цифровую модель. Такое обратное построение цифровых моделей по образцу называется реверсинженирингом. Для каждой задачи используется разные типы сканеров, которые могут передать сложный рельеф и геометрию, выделить мелкие детали, повторить текстурную поверхность и многое другое.
Для изготовления изделий партиями из пластика или полиуретана может быть востребована услуга вакуумное литье, которая сэкономит бюджет и при сохранении формы может много раз востребована. 
Еще один вид услуг по трехмерной технологии — это фрезерно-гравировальные услуги. Особо востребованы при работе с металлами, деревом и позволяют с высокой точностью воссоздать модель.
Услуги по лазерной резке для листовых материалов — простое решение для получения качественных изделий, тиснения, гравировки на большинстве материалов.
Для получения услуги 3д печати в Москве можно обратиться к нам или при наличии собственных специалистов взять оборудование в аренду. Что очень удобно при участии в выставках, конференциях и многих других мероприятиях.

3Dcrafter.ru — 3D-печать в Москве на заказ на высокоточных 3D-принтерах

Отзывы наших клиентов

Богатырев Святослав, Технический директор «Старк Системс»:
«Очень долгое время искали альтернативу производства для нашего продукта, так как товар штучный и создается индивидуально в основном под требования клиента. Нарезка на ЧПУ нас устраивала, но такие два важных фактора, как себестоимость и время, стали камнем преткновения в реалиях рынка РФ. Задумались о современном методе создания объектов — печати на 3D-принтере. Несколько компаний спустя, наткнулись на этих ребят. Если в других студиях 3D-печати не могли даже проконсультировать людей, которые незнакомы с технологией, требовали 3D-модель, которой на тот момент у нас не было, то здесь уже в телефонном разговоре стало ясно, что нам помогут! Начиная с легкой телефонной консультации и продолжая на личной встрече в их офисе, мы узнали всё о 3D-печати, материалах, сроках и стоимости. Ребята сразу предложили адаптировать конечный продукт под 3D-принтер, создали 3D-модель, которая была оптимизирована для 3D-печати, но без потери необходимых характеристик по ТУ. Как же нас удивила стоимость и сроки изготовления. В 3-4 раза дешевле того же, что мы раньше заказывали на ЧПУ, и производство быстрее в десятки раз. Первые образцы прошли все испытания прочности и стойкости к агрессивным средам. С 2014 года работаем только с ними. Мы стали не просто их клиентами, а друзьями и единомышленниками.»

Григорий Григорян, Руководитель проекта «Total Vision»:
«Задача была непростой — напечатать быстро и качественно корпус шлема виртуальной реальности. Очень редко встречаешь такой приятный индивидуальный подход к клиенту, никакой бюракратии, никаких «не знаю и может быть», сначала вводный курс по 3D-печати, затем сама 3D-печать. Хочу отметить, что крафтеры отлично справляются с задачами в сжатые сроки. Прототипы, изготовленные здесь, полностью удовлетворяли нашим требованиям. Со временем мы стали просить дорабатывать наши 3D-модели, и их специалисты в этом деле профессионалы высшего класса. Когда перешли на серийное производство, также здесь заказывали мастер-модели для создания силиконовых форм. С конца 2014 года эта компания нас выручала десятки раз. До сих пор с радостью сотрудничаем по всем новым разработкам. Удивляет то, что без оговорок и в срочном порядке переделывают брак, даже когда мы считаем, что брака нет. Огромное спасибо Вам! Держите дальше этот курс!»

Александр Воинов, Менеджер по проектам «Кей-групп»:
«На первом же заказе подвели по срокам изготовления, переносили сдачу заказа два раза. Конечно же, это не понравилось мне и моему начальству, хоть сроки и не горели, все равно неприятно. Объяснения со стороны компании просто не поддавались логике. Когда все же нам доставили заказ, то сомнения в компетенции сотрудников развеялись мгновенно. Нам привезли 8 экземпляров нашего продукта, хоть мы и заказывали один, каждый из них был подписан и имел примечание на сопроводительном письме. Ознакомившись со всеми материалами, стало ясно, что качество в их коллективе превыше всего. Благодаря представленным доказательствам, можно было наблюдать эволюцию совершенствования производства нашего продукта. Мы и до этого заказывали 3D-печать в других компаниях, и не ожидали увидеть что-то новое здесь, пусть нам и хотелось. Результат был на порядок выше того, что раньше нам предлагали. Заручившись обещанием с их стороны, что нас больше не будут подводить по срокам, мы решили сотрудничать по остальным заказам. Обещания держать умеют. Больше никаких сбоев в производстве не было. Также в этой компании очень строго соблюдают соглашение о конфиденциальности, что в нашем деле является одним из самых важных моментов. Наша благодарность Вам будет выражаться в долгосрочном сотрудничестве и теперь уже лояльном отношении. Спасибо от всего коллектива «Кей-групп»!»

Тимур Искаков, Генеральный директор старт-апа «GeoWatch»:
«Нереально крутые спецы своего дела! Я бы именно им присвоил слоган «невозможное — возможно», причем они бы еще предложили несколько вариантов решений «невозможного»:). Прототипы изготовленные в этой 3D-типографии поразили всех на Moscow Start-up Day 2014. Настолько сильно мы сдружились с коллективом, что они нам сделали подарок в виде разработанного нового технического дизайна корпуса наших часов, который превзошел себя по всем показателям. Ребята делают чудеса! Они не просто выполняют свою работу, они ей живут, отдают всю душу своему делу. Только здесь реально выслушают вас и решат проблемы. Друзья, спасибо! С Вами понимаешь, что всё возможно! Вы новое поколение молодого бизнеса нашей необъятной страны, которое доказывает делом, что все мы на подъеме и всё у нас получится!»

3D-печать для «чайников» или «что такое 3D-принтер?»

Термин 3D-печать

Термин 3D-печать имеет несколько синонимов, один из которых достаточно кратко и точно характеризует сущность процесса – «аддитивное производство», то есть производство за счет добавления материала. Термин был придуман не случайно, ибо в этом и состоит основное отличие множественных технологий 3D-печати от привычных методов промышленного производства, получивших в свою очередь название «субтрактивных технологий», то есть «отнимающих». Если при фрезеровке, шлифовке, резке и прочих схожих процедурах лишний материал удаляется с заготовки, то в случае с аддитивным производством материал постепенно добавляется до получения цельной модели.

В скором времени 3D-печать будет опробована даже на Международной космической станции

Строго говоря, многие традиционные методы можно было бы отнести к «аддитивным» в широком смысле этого слова – например, литье или клепку. Однако стоит иметь в виду, что в этих случаях либо требуется расход материалов на изготовление специфических инструментов, занятых в производстве конкретных деталей (как в случае с литьем), либо весь процесс сводится к соединению уже готовых деталей (сварке, клепке и пр.). Для того чтобы технология классифицировалась как «3D-печать», необходимо построение конечного продукта из сырья, а не заготовок, а формирование объектов должно быть произвольным – то есть без использования форм. Последнее означает, что аддитивное производство требует программной составляющей. Грубо говоря, аддитивное производство требует управления с помощью компьютеров, чтобы форму конечных изделий можно было определять за счет построения цифровых моделей. Именно этот фактор и задержал широкое распространение 3D-печати до того момента, когда числовое программное управление и 3D-проектирование стали общедоступными и высокопроизводительными.

Методы 3D-печати

Технологий 3D-печати существует великое множество, названий же для них еще больше ввиду патентных ограничений. Тем не менее, можно попробовать разделить технологии по основным направлениям:

Экструзионная печать

Сюда входят такие методы, как послойное наплавление (FDM) и многоструйная печать (MJM). В основе этого метода лежит выдавливание (экструзия) расходного материала с последовательным формированием готового изделия. Как правило, расходные материалы состоят из термопластиков, либо композитных материалов на их основе.

Плавка, спекание или склеивание

Этот подход основывается на соединении порошкового материала в единое целое. Формирование производится разными способами. Наиболее простым является склеивание, как в случае со струйной трехмерной печатью (3DP). Подобные принтеры наносят на рабочую платформу тонкие слои порошка, которые затем выборочно склеиваются связующим материалом. Порошки могут состоять из практически любого материала, который можно измельчить до состояния пудры – пластика, древесины, металла.

Эта модель автомобиля Aston Martin, принадлежавшего Джеймсу Бонду, была успешно напечатана на SLS-принтере компании Voxeljet и не менее успешно взорвана во время съемок фильма «Координаты Скайфолл» вместо дорогого оригинала

Наиболее популярными же в данной категории стали технологии лазерного спекания (SLS и DMLS) и плавки (SLM), позволяющие создавать цельнометаллические детали. Как и в случае со струйной трехмерной печатью, эти устройства наносят тонкие слои порошка, но материал не склеивается, а спекается или плавится с помощью лазера. Лазерное спекание (SLS) применяется для работы как с пластиковыми, так и с металлическими порошками, хотя металлические гранулы обычно имеют более легкоплавкую оболочку, а после печати дополнительно спекаются в специальных печах. DMLS – вариант SLS установок с более мощными лазерами, позволяющими спекать непосредственно металлические порошки без добавок. SLM-принтеры предусматривают уже не просто спекание частиц, а их полную плавку, что позволяет создавать монолитные модели, не страдающие от относительной хрупкости, вызываемой пористостью структуры. Как правило, принтеры для работы с металлическими порошками оснащаются вакуумными рабочими камерами, либо замещают воздух инертными газами. Подобное усложнение конструкции вызывается необходимостью работы с металлами и сплавами, подверженными оксидации – например, с титаном.

Стереолитография

Схема работы SLA-принтера

Стереолитографические принтеры используют специальные жидкие материалы, называемые «фотополимерными смолами». Термин «фотополимеризация» указывает на способность материала затвердевать под воздействием света. Как правило, такие материалы реагируют на облучение ультрафиолетом.

Смола заливается в специальный контейнер с подвижной платформой, которая устанавливается в позиции возле поверхности жидкости. Слой смолы, покрывающий платформу, соответствует одному слою цифровой модели. Затем тонкий слой смолы обрабатывается лазерным лучом, затвердевая в точках соприкосновения. По окончании засветки платформа вместе с готовым слоем погружаются на толщину следующего слоя, и засветка производится вновь.

Ламинирование

Схема работы 3D-принтеров, использующих технологию ламинирования (LOM)

Некоторые 3D-принтеры выстраивают модели, используя листовые материалы – бумагу, фольгу, пластиковую пленку.

Слои материала наклеиваются друг на друга и обрезаются по контурам цифровой модели с помощью лазера или лезвия.

Такие установки хорошо подходят для макетирования и могут использовать очень дешевые расходные материалы, включая обычную офисную бумагу. Тем не менее, сложность и шумность таких принтеров, вкупе с ограниченными возможностями изготовляемых моделей ограничивают их популярность.

Наиболее популярными методами 3D-печати, применяемыми в быту и в офисных условиях стали моделирование методом послойного наплавления (FDM) и лазерная стереолитография (SLA).

Остановимся на этих технологиях поподробнее.

Печать методом послойного наплавления (FDM)

FDM – пожалуй, наиболее простой и доступный метод трехмерного построения, что и обуславливает его высокую популярность.

Высокий спрос на FDM-принтеры ведет к быстрому снижению цен на устройства и расходные материалы, наряду с развитием технологии в направлении удобства эксплуатации и повышения надежности.

Расходные материалы

Катушка с нитью из ABS-пластика и готовая модель

FDM-принтеры предназначены для печати термопластиками, которые обычно поставляются в виде тонких нитей, намотанных на катушки. Ассортимент «чистых» пластиков весьма широк. Одним из наиболее популярных материалов является полилактид или «PLA-пластик». Этот материал изготавливается из кукурузы или сахарного тростника, что обуславливает его нетоксичность и экологичность, но делает его относительно недолговечным. ABS-пластик, наоборот, очень долговечен и износоустойчив, хотя и восприимчив к прямому солнечному свету и может выделять небольшие объемы вредных испарений при нагревании. Из этого материала производятся многие пластиковые предметы, которыми мы пользуемся на повседневной основе: корпуса бытовых устройств, сантехника, пластиковые карты, игрушки и т.д.

Кроме PLA и ABS возможна печать нейлоном, поликарбонатом, полиэтиленом и многими другими термопластиками, широко распространенными в современной промышленности. Возможно и применение более экзотичных материалов – таких, как поливиниловый спирт, известный как «PVA-пластик». Этот материал растворяется в воде, что делает его весьма полезным при печати моделей сложной геометрической формы. Но об этом чуть ниже.

Модель, изготовленная из Laywoo-D3. Изменение температуры экструзии позволяет добиваться разных оттенков и имитировать годовые кольца

Вовсе необязательно печатать однородными пластиками. Возможно и применение композитных материалов, имитирующих древесину, металлы, камень. Такие материалы используют все те же термопластики, но с примесями непластичных материалов.

Так, Laywoo-D3 состоит отчасти из натуральной древесной пыли, что позволяет печатать «деревянные» изделия, включая мебель.

Материал под названием BronzeFill имеет наполнитель из настоящей бронзы, а изготовленные из него модели поддаются шлифовке и полировке, достигая высокой схожести с изделиями из чистой бронзы.

Стоит лишь помнить, что связующим элементом в композитных материалах служат термопластики – именно они и определяют пороги прочности, термоустойчивости и другие физические и химические свойства готовых моделей.

Экструдер

Экструдер – печатная головка FDM-принтера. Строго говоря, это не совсем верно, ибо головка состоит из нескольких частей, из которых непосредственно «экструдером» является лишь подающий механизм. Тем не менее, по устоявшейся традиции термин «экструдер» повсеместно применяется в качестве синонима целой печатающей сборки.

Общая схема конструкции FDM-экструдера

Экструдер предназначен для плавки и нанесения термопластиковой нити. Первый компонент – механизм подачи нити, состоящий из валиков и шестерней, приводимых в движение электромотором. Механизм осуществляет подачу нити в специальную нагреваемую металлическую трубку с соплом небольшого диаметра, называемую «хот-энд» или просто «сопло». Тот же механизм используется и для извлечения нити, если необходима смена материала.

Хот-энд служит для нагревания и плавления нити, подаваемой протягивающим механизмом. Как правило, сопла производятся из латуни или алюминия, хотя возможно использование более термоустойчивых, но и более дорогих материалов. Для печати наиболее популярными пластиками вполне достаточно и латунного сопла. Собственно «сопло» крепится к концу трубки с помощью резьбового соединения и может быть заменено на новое в случае износа или при необходимости смены диаметра. Диаметр сопла обуславливает толщину расплавленной нити и, как следствие, влияет на разрешение печати. Нагревание хот-энда регулируется термистором. Регулировка температуры очень важна, так при перегреве материала может произойти пиролиз, то есть разложение пластика, что способствует как потере свойств самого материала, так и забиванию сопла.

Экструдер FDM-принтера PrintBox3D One

Для того чтобы нить не расплавилась слишком рано, верхняя часть хот-энда охлаждается с помощью радиаторов и вентиляторов. Этот момент имеет огромное значение, так как термопластики, проходящие порог температуры стеклования, значительно расширяются в объеме и повышают трение материала со стенками хот-энда. Если длина такого участка слишком велика, протягивающему механизму может не хватить сил для проталкивания нити.

Количество экструдеров может варьироваться в зависимости от предназначения 3D-принтера. Простейшие варианты используют одну печатающую головку. Двойной экструдер значительно расширяет возможности устройства, позволяя печатать одну модель двумя разными цветами, а также использовать разные материалы. Последний момент важен при построении сложных моделей с нависающими элементами конструкции: FDM-принтеры не могут печатать «по воздуху», так как наносимым слоям требуется опора. В случае с навесными элементами приходится печатать временные опорные структуры, которые удаляются по завершении печати. Процесс удаления чреват повреждением самой модели и требует аккуратности. Кроме того, если модель имеет сложную структуру с труднодоступными внутренними полостями, построение обычных опор может оказаться непрактичным виду сложности удаления лишнего материала.

Готовая модель с опорами из PVA-пластика (белого цвета) до и после промывки

В таких случаях весьма кстати приходится тот самый водорастворимый поливиниловый спирт (PVA-пластик). С помощью двойного экструдера можно построить модель из водоупорного термопластика, используя PVA для создания опор.

После окончания печати PVA можно просто растворить в воде и получить сложное изделие идеального качества.

Некоторые модели FDM-принтеров могут использовать три или даже четыре экструдера.

Рабочая платформа

Подогреваемая платформа, накрытая съемным стеклянным рабочим столиком

Построение моделей происходит на специальной платформе, зачастую оснащаемой нагревательными элементами. Подогрев требуется для работы с целым рядом пластиков, включая популярный ABS, подверженных высокой степени усадки при охлаждении. Быстрая потеря объема холодными слоями в сравнении со свеженанесенным материалом может привести к деформации модели или расслоению. Подогрев платформы позволяет значительно выравнивать градиент температур между верхними и нижними слоями.

Для некоторых материалов подогрев противопоказан. Характерный пример – PLA-пластик, который требует достаточно длительного времени для затвердевания. Подогрев PLA может привести к деформации нижних слоев под тяжестью верхних. При работе с PLA обычно принимаются меры не для подогрева, а для охлаждения модели. Такие принтеры имеют характерные открытые корпуса и дополнительные вентиляторы, обдувающие свежие слои модели.

Калибровочный винт рабочей платформы, покрытой синим малярным скотчем

Платформа требует калибровки перед печатью, чтобы сопло не задевало нанесенные слои и не отходило слишком далеко, вызывая печать «по воздуху», что приводит к образованию «вермишели» из пластика. Процесс калибровки может быть как ручным, так и автоматическим. В ручном режиме калибровка производится позиционированием сопла в разных точках платформы и регулировкой наклона платформы с помощью опорных винтов для достижения оптимальной дистанции между поверхностью и соплом.

Как правило, платформы оснащаются дополнительным элементом – съемным столиком. Такая конструкция упрощает чистку рабочей поверхности и облегчает снятие готовой модели. Столики производятся из различных материалов, включая алюминий, акрил, стекло и пр. Выбор материала для изготовления столика зависит от наличия подогрева и расходных материалов, под которые оптимизирован принтер.

Для лучшего схватывания первого слоя модели с поверхностью столика зачастую применяются дополнительные средства, включая полиимидную пленку, клей и даже лак для волос! Но наиболее популярным средством служит недорогой, но эффективный малярный скотч. Некоторые производители делают перфорированные столики, хорошо удерживающие модель, но сложные в очистке. В целом, целесообразность нанесения дополнительных средств на столик зависит от расходного материала и материала самого столика.

Механизмы позиционирования

Схема работы позиционирующих механизмов

Само собой, печатающая головка должна перемещаться относительно рабочей платформы, причем в отличие от обычных офисных принтеров, позиционирование должно производиться не в двух, а в трех плоскостях, включая регулировку по высоте.

Схема позиционирования может варьироваться. Самый простой и распространенный вариант подразумевает крепление печатающей головки на перпендикулярных направляющих, приводимых в движение пошаговыми двигателями и обеспечивающими позиционирование по осям X и Y.

Вертикальное же позиционирование осуществляется за счет передвижения рабочей платформы.

С другой стороны, возможно передвижение экструдера в одной плоскости, а платформы – в двух.

Дельта-принтер ORION производства компании SeemeCNC

Один из вариантов, набирающих популярность, является использование дельтаобразной системы координат.

Подобные устройства в промышленности называют «дельта-роботами».

В дельта-принтерах печатная головка подвешивается на трех манипуляторах, каждый из которых передвигается по вертикальной направляющей.

Синхронное симметричное движение манипуляторов позволяет изменять высоту экструдера над платформой, а ассиметричное движение вызывает смещение головки в горизонтальной плоскости.

Вариантом такой системы является обратный дельтовидный дизайн, где экструдер крепится неподвижно к потолку рабочей камеры, а платформа передвигается на трех опорных манипуляторах.

Дельта-принтеры имеют цилиндрическую область построения, а их конструкция облегчает увеличение высоты рабочей зоны с минимальными изменениями дизайна за счет удлинения направляющих.

В итоге все зависит от решения конструкторов, но основополагающий принцип не меняется.

Управление

Типичный контроллер на основе Arduino, оснащенный дополнительными модулями

Управление работой FDM-принтера, включая регулировку температуры сопла и платформы, темпа подачи нити и работы пошаговых моторов, обеспечивающих позиционирование экструдера, выполняется достаточно простыми электронными контроллерами. Большинство контроллеров основываются на платформе Arduino, имеющей открытую архитектуру.

Программный язык, используемый принтерами, называется G-код (G-Code) и состоит из перечня команд, поочередно выполняемых системами 3D-принтера. G-код компилируется программами, называемыми «слайсерами» – стандартным программным обеспечением 3D-принтеров, сочетающим некоторые функции графических редакторов с возможностью установки параметров печати через графический интерфейс. Выбор слайсера зависит от модели принтера. Принтеры RepRap используют слайсеры с открытым исходным кодом – такие, как Skeinforge, Replicator G и Repetier-Host. Некоторые компании создают принтеры, требующие использование фирменного программного обеспечения.

Программный код для печати генерируется с помощью слайсеров

В качестве примера можно упомянуть принтеры линейки Cube от компании 3D Systems. Есть и такие компании, которые предлагают фирменное обеспечение, но позволяют использовать и сторонние программы, как в случае с последними поколениями 3D-принтеров компании MakerBot.

Слайсеры не предназначены для 3D-проектирования, как такового. Эта задача выполняется с помощью CAD-редакторов и требует определенных навыков трехмерного дизайна. Хотя новичкам не стоит отчаиваться: цифровые модели самых различных дизайнов предлагаются на многих сайтах, зачастую даже бесплатно. Наконец, некоторые компании и частные специалисты предлагают услуги 3D-проектирования для печати на заказ.

И наконец, 3D-принтеры можно использовать вкупе с 3D-сканерами, автоматизирующими процесс оцифровки объектов. Многие их таких устройств создаются специально для работы с 3D-принтерами. Наиболее известные примеры включают ручной сканер 3D Systems Sense и портативный настольный сканер MakerBot Digitizer.

FDM-принтер MakerBot Replicator 5-го поколения, со встроенным контрольным модулем в верхней части рамы

Пользовательский интерфейс 3D-принтера может состоять из банального USB порта для подключения к персональному компьютеру. В таких случаях управление устройством фактически осуществляется посредством слайсера.

Недостатком такой упрощенности является достаточно высокая вероятность сбоя печати при зависаниях или притормаживании компьютера.

Более продвинутый вариант включает наличие внутренней памяти или интерфейса для карты памяти, что позволяет сделать процесс автономным.

Такие модели оснащаются контрольными модулями, позволяющими регулировать многие параметры печати (например, скорость печати или температуру экструзии). В состав модуля может входить небольшой LCD-дисплей или даже мини-планшет.

Разновидности FDM-принтеров

Профессиональный FDM-принтер Stratasys Fortus 360mc, позволяющий печатать нейлоном

FDM-принтеры весьма и весьма разнообразны, начиная от простейших самодельных RepRap принтеров и заканчивая промышленными установками, способными печатать крупногабаритные объекты.

Лидером по производству промышленных установок является компания Stratasys, основанная автором технологии FDM-печати Скоттом Крампом.

Простейшие FDM-принтеры можно построить самому. Такие устройства именуют RepRap, где «Rep» указывает на возможность «репликации», то есть самовоспроизведения.

RepRap принтеры могут быть использованы для печати пластиковых деталей, включенных в собственную конструкцию.

Контроллер, направляющие, ремни, моторы и прочие компоненты можно легко приобрести по отдельности.

Разумеется, сборка подобного устройства своими силами требует серьезных технических и даже инженерных навыков.

Некоторые производители облегчают задачу, продавая комплекты для самостоятельной сборки, но подобные конструкторы все равно требуют хорошего понимания технологии.

Вариант популярного RepRap принтера Prusa позднего, третьего поколения

Если же вам по душе мастерить вещи собственными руками, то RepRap принтеры приятно порадуют ценой: средняя стоимость популярного дизайна Prusa Mendel ранних поколений составляет порядка $500 в полной комплектации.

И, несмотря на свою «самодельную сущность», RepRap принтеры вполне способны производить модели с качеством на уровне дорогих фирменных собратьев.

Обыденные же пользователи, не желающие вникать в тонкости процесса, а требующие лишь удобное устройство для бытовой эксплуатации, могут приобрести FDM-принтер в готовом виде.

Многие компании делают упор на развитие именно пользовательского сегмента рынка, предлагая на продажу 3D-принтеры, готовые к печати «прямо из упаковки» и не требующие серьезных навыков в обращении с компьютерами.

Бытовой 3D-принтер Cube производства компании 3D Systems

Самым известным примером бытового 3D-принтера служит 3D Systems Cube.

Хотя это устройство и не блещет огромной зоной построения, сверхвысокой скоростью печати или непревзойденным качеством изготовления моделей, оно удобно в использовании, вполне доступно и безопасно: этот принтер получил необходимую сертификацию для использования даже детьми.

Демонстрация работы FDM-принтера производства компании Mankati: http://youtu.be/51rypJIK4y0

Лазерная стереолитография (SLA)

Стереолитографические 3D-принтеры широко используются в зубном протезировании

Стереолитографические принтеры – вторые по популярности и распространенности после FDM-принтеров.

Эти устройства позволяют добиваться исключительно высокого качества печати.

Разрешение некоторых SLA-принтеров исчисляется считанными микронами – неудивительно, что эти устройства быстро завоевали любовь ювелиров и стоматологов.

Программная сторона лазерной стереолитографии практически идентична FDM-печати, поэтому не будем повторяться и затронем лишь отличительные особенности технологии.

Лазеры и проекторы

Проекторная засветка фотополимерной модели на примере DLP-принтера Kudo3D Titan

Стоимость стереолитографических принтеров стремительно снижается, что объясняется растущей конкуренцией ввиду высокого спроса и применением новых технологий, удешевляющих конструкцию.

Несмотря на то, что технология обобщенно называется «лазерной» стереолитографией, наиболее современные разработки в большинстве своем применяют ультрафиолетовые светодиодные проекторы.

Проекторы дешевле и надежнее лазеров, не требуют использования деликатных зеркал для отклонения лазерного луча, а также имеют более высокую производительность. Последнее объясняется тем, что контур целого слоя засвечивается целиком, а не последовательно, точка за точкой, как в случае с лазерными вариантами. Этот вариант технологии называется проекторной стереолитографией, «DLP-SLA» или просто «DLP». Тем не менее, на данный момент распространены оба варианта – как лазерные, так и проекторные версии.

Кювета и смола

Фотополимерная смола заливается в кювету

В качестве расходных материалов для стереолитографических принтеров используется фотополимерная смола, внешне напоминающая эпоксидную. Смолы могут иметь самые разные характеристики, но все они обладают одной чертой, краеугольной для применения в 3D-печати: эти материалы затвердевают под воздействием ультрафиолетового света. Отсюда, собственно, и название «фотополимерные».

В полимеризованном виде смолы могут иметь самые разные физические характеристики. Некоторые смолы напоминают резину, другие – твердые пластики вроде ABS. Возможен выбор разных цветов и степени прозрачности. Главный же недостаток смол и SLA-печати в целом – стоимость расходных материалов, значительно превышающая стоимость термопластиков.

С другой стороны, стереолитографические принтеры в основном применяются ювелирами и стоматологами, не требующими построения деталей большого размера, но ценящими экономию от быстрого и точного прототипирования изделий. Таким образом, SLA-принтеры и расходные материалы окупаются очень быстро.

Пример модели, напечатанной на лазерном стереолитографическом 3D-принтере

Смола заливается в кювету, которая может оснащаться опускаемой платформой. В этом случае принтер использует выравнивающее устройство для разглаживания тонкого слоя смолы, покрывающего платформу, непосредственно перед облучением. По мере изготовления модели платформа вместе с готовыми слоями «утапливается» в смоле. По завершении печати модель вынимается из кюветы, обрабатывается специальным раствором для удаления остатков жидкой смолы и помещается в ультрафиолетовую печь, где производится окончательная засветка модели.

Некоторые SLA и DLP принтеры работают по «перевернутой» схеме: модель не погружается в расходный материал, а «вытягивается» из него, в то время как лазер или проектор размещаются под кюветой, а не над ней. Такой подход устраняет необходимость выравнивания поверхности после каждой засветки, но требует использования кюветы из прозрачного для ультрафиолетового света материала – например, из кварцевого стекла.

Точность стереолитографических принтеров чрезвычайно высока. Для сравнения, эталоном вертикального разрешения для FDM-принтеров считается 100 микрон, а некоторые варианты SLA-принтеров позволяют наносить слои толщиной всего в 15 микрон. Но и это не предел. Проблема, скорее, не столько в точности лазеров, сколько в скорости процесса: чем выше разрешение, тем ниже скорость печати. Использование цифровых проекторов позволяет значительно ускорить процесс, ибо каждый слой засвечивается целиком. Как результат, производители некоторых DLP-принтеров заявляют о возможности печатать с разрешением в один микрон по вертикали!

Видео с выставки CES 2013, демонстрирующее работу стереолитографического 3D-принтера Formlabs Form1: http://youtu.be/IjaUasw64VE

Разновидности стереолитографических принтеров

Настольный стереолитографический принтер Formlabs Form1

Как и в случае с FDM-принтерами, SLA-принтеры поставляются в широком диапазоне с точки зрения габаритов, возможностей и стоимости. Профессиональные установки могут стоить десятки, если не сотни тысяч долларов и весить пару тонн, но быстрое развитие настольных SLA и DLP-принтеров приводит к постепенному снижению стоимости аппаратуры без потери качества печати.

Такие модели как Titan 1 обещают сделать стереолитографическую 3D-печать доступной для небольших компаний и даже для бытового использования, имея стоимость в районе $1 000. Form 1 от компании Formlabs уже доступен по отпускной цене производителя в $3 299.

Разработчик же DLP принтера Peachy вообще намеревается преодолеть нижний ценовой барьер в $100.

При этом стоимость фотополимерных смол остается достаточно высокой, хотя средняя цена за последнюю пару лет упала со $150 до $50 за литр.

Само собой, растущий спрос на стереолитографические принтеры будет стимулировать рост производства расходных материалов, что будет вести к дополнительному снижению цен.

Перейти на главную страницу Энциклопедии 3D-печати

Как напечатать на 3d принтере другой 3d принтер

Уже есть 3D-принтер? Хочу еще один?!

Зачем это нужно?

Ну, допустим, у вас есть свой более крупный принтер и вы можете печатать достаточно крупные объекты. Вы верите в идею движения reprap, принтер должен иметь возможность самостоятельно воспроизводить себя!

Или вы хотите бросить вызов себе и окончательно разобраться, как работает 3D-принтер.

Или ваш нынешний 3D-принтер просто стоит и пылится в углу комнаты, потому что вы уже напечатали все что приходило в голову и осталось самая сложная задача, которая беспокоит всех профессионалов 3d печати — как осуществить клонирование имеющегося оборудования на нем самом.

Шаг 1: Предисловие

Давайте будем откровенными… это не ультра дешевый принтер. Это не Chery 3D-принтер за $60. Это не способ сэкономить деньги или время. Это не первый принтер.

Теперь поговорим о том, что это такое.

В 3Dtje мини-3D-принтер — это:

  • Чертовски легко напечатать
    • Печатные части из PLA
    • Все укладывается в пределах 200х200 объем печати
      • Большинство деталей могут быть напечатаны в 100х100 объема печати
    • Большинство деталей печатаются без поддержек, лишь в некоторых случаях они могут понадобиться для улучшения качества
  • Очень мало нужных инструментов
    • В отличие от большинства поделок, которые требуют наличие лазерного резака, ЧПУ
    • Вы, вероятно, можете обойтись дрелью и ножовкой, чтобы подготовить 2 стержня необходимого размера
    • Не нужно источника МДФ, или дерева, или акриловые листы или алюминиевые профили, на которые можно сильно потратиться
  • A Prusa i3 Clone
    • Эта конструкция не новая, ничего революционного, но она надежная, печатает хорошо и работает с любым слайсером
  • Открытым исходным кодом
    • Все файлы моделей можно скачать бесплатно
    • Вы можете скачать их и изменять их так, как вы хотели бы
    • Вы даже можете продать их, если это вам нужно!
  • Простая и интересная печать
    • 19 моделек
    • Все детали разные и вместе смотрятся очень интересно
  • Простой в сборке
    • Все детали соединяются с помощью винтов и гаек м3.
    • Резка от 2 до 4 металлических направляющих
    • Некоторые 3d печатные детали собираются интуитивно, даже можно не обращать внимание на фото
  • Действительно чертовски круто!
    • Маленький, портативный, малая масса движущихся частей! Этот принтер может печатать быстро! (при правильной настройке)
    • Этот 3д принтер вы сделаете своими руками, полностью!!

Давайте начнем!

Шаг 2: Предпосылки

Вам понадобится 3D-принтер, ну или найти кого-то с этим аппаратом.

  • Область печати должна быть не менее 200х200мм XY и может, 200мм Z если вы хотите печатать стержнями, лол
  • ПЛА 1 кг, можно другой, но это самый удобный вариант 
    • Я, честно говоря, не знаю, сколько его потребуется. Скорее всего 500г или около того
  • Инструменты
    • Отвертки для винтов
    • Плоскогубцы, приспособления для очистки печатных объектов (канцелярского ножа достаточно)
    • Метрические сверла для открытия / чистки печатного отверстия (можно и отверткой)
  • Знания о том, как построить 3D-принтер с нуля
    • Это не жесткие требования, но зная, как решать распространенные проблемы принтера позволит сократить количество ругани, когда все не идеально в первый раз 
    • Если Вы разбираетесь в прошивке Марлин было бы очень круто пообщаться на этот счет, так как есть желание улучшить некоторые вещи.

Шаг 3: Комплектующие

Сразу оговорим, я составил список того, что точно нужно и того, что можно купить, чтобы сделать как можно лучшее качество. Но это будет дороже. Поэтому Вам выбирать, какой набор покупать — принципиально они не будут отличаться. Кроме того, можно заказать все это из Китая, будет дешевле, но ждать дольше. В любом случае искать надо на английском все комплектующие, поэтому берем их из таблицы и, например, вставляем в поиск на alliexexspress.

Вот ссылка.

Шаг 4: Печать деталей

Теперь переходим к самой интересной, на мой взгляд, части — прототипированию моделек. Честно говоря, я очень люблю печатать всякие разные штуки, чувствуешь, что тебе по плечу любая задача, когда под рукой есть 3d принтер. Ладно, это все лирика.

Вот здесь расположен сам проект, где можно бесплатно скачать 3d модели для принтера. Качаем и начинаем подготовку к печати.

Самое главное — расположить верным образом детали на столе. Имеется в виду сделать так, чтобы у моделей как можно меньше было частей, висящих в воздухе. Это позволит отказаться от поддержек. Они ведь очень сильно портят качество, если делать слайсинг через Repetier Host с их автогенерацией, а не рисовать их самому.

Можно посмотреть видео, на котором видно оптимальное расположение деталей. Настройки печати я думаю Вы умеете делать, если нет — здесь есть статьи про это с файлами конфигураций.

Шаг 5: Монтаж

Предположим, что мы все напечатали. Кто-то может направляющие решил использовать металлические, купив их, например, в ИКЕЕ и разрезал их ну нужной длины участки. В любом случае, писать, как собирать этот 3d принтер особого смысла нет, да и лень, если честно. На мой взгляд — лучше фоток ничего нет!

Сборка рамы

Сначала выложу то, как должно выглядеть наше чудо в момент средней готовности. Потом будем смотреть как модули собирались.

Сборка оси Y

Данная ось двигает так называемую кровать. Сначала нам нужно установить мотор, на него надеть шкив. Затем установим свободно вращающийся шкив с другой стороны и вымерить для них ремень.

И теперь установим саму кровать, которая скрепит нам два конца ремня. Только не забудьте переде этим затянуть шкивы и то, что еще не туго затянуто. Подложка будет массивно и подлезать уже туда будет неудобно. Для соединения потребуются болты 200mm x 6mm, так что приготовьте их сразу.

Стоит отметить, что ремень должен быть очень хорошо натянут. Это будет сильно влиять на качество печати. Если вы не можете это сделать в момент сборки — можно воспользоваться специальным натяжителем. Это по сути простая пружинка. Что касается осей, то в данном случае они напечатаны, хотя это далеко не обязательно, просто название проекта обязывает))

Сборка оси X

В зависимости от вашего принтера, вам может понадобиться сделать отверстие сверлом 3мм в натяжителе ремня. Это отверстие должно быть весьма свободно.

  1. Прикрепите мотор к концу оси x разъемом вниз
  2. Прикрепите 20Т шестерни
  3. Вставьте 6мм стержни 6мм х 180 мм в отверстия на стороне двигателя. Вам нужно сократить эти стержни, если вы купили 200мм.
  4. Собрать натяжитель оси x либо с вашим собственным, либо с напечатанным натяжительным подшипником. Убедитесь, что гайка м3 в натяжителе, прежде чем продолжать.
  5. Пропустите ремень с левой стороны (со стороны двигателя), через редуктор, через натяжной подшипник на правую сторону
  6. В этот момент вы, вероятно, следует установить справа от оси x на стержни натяжитель ремня
  7. Если вас устраивает длина (убедитесь, что оси x натяжителя утоплен совсем немного) можно перерезать ремень. Не забудьте оставить дополнительную длину ремня
  8. Прикрепите LM6UU подшипники в каретке x
  9. Все собрали, ремни прикрепите к каретке x
  10. Потом останется отрегулировать все немного, чтобы убедиться в том, что ничего друг о друга не задевает

Сборка оси Z

Теперь собираем ось Z. Если Вы еще не поставили по ходу прошлых работ движки — самое время это сделать. Как понимаете, они должны стоять слева и справа. На них установим переходники для винтовых стержней, куда оные и поставим, зажав их шестигранником.

Втыкаем направляющие (параллельно винтовым стержням) и вс ок. Можно сказать, что со сборкой корпуса мы закончили.

Шаг 6: Сборка электрической цепи.

Как укладывать проводку — дело каждого. Здесь будут приведены на фото варианты, а так решать вам. Самое важное — все правильно подключить. Схему тоже выложу, но лучше еще посмотреть как в обычных 3d принтерах это делается. Например, чтобы далеко не ходить, можно прям на данном сайте пробежаться по следующим статьям:

Не обязательно все читать — по картинкам можно увидеть ключевые места и углубиться именно в их изучение.

В картинке ниже виден терминал питания зеленого цвета. Это весьма опасная и ненадежная вещь, которая иногда воспламеняется — опасно оставлять дома без присмотра работающий 3d принтер. Поэтому в статье про Ramps лучше почитать, как быть в этом случае.

Шаг 7: Прошивка

Так как у вас в роли мозга 3d принтера будет (скорее всего) Arduino Mega, то залить на нее прошивку будет достаточно просто. Все что вам нужно — Arduino IDE. Самая стандартная прошивка от Marlin. Главное выбрать конфиги правильные для платы. На данном ресурсе статьи про прошивку я не видел, но на просторах интернета ее можно легко найти. Вот полезные ссылки:

Шаг 8: Тестим

Наконец-то время что-нибудь напечатать! Сразу отметим, что стол надо покрыть молярным скотчем или каптоном, так как он у нас без подогрева. Иначе адгезии не будет. Также перед печатью обязательно правильно надо настроить расстояние между соплом и кроватью. О том, как это правильно сделать говорится здесь. Калибровка 3d принтера — наше все!!!

Так как вы смогли напечатать детали для этого принтера — значит можете и заслайсить собственные модели для его маленькой копи, собранной своими руками. Поэтому про слайсер говорить не будем, не забудьте только уменьшить область печати!

А так вот что каждый из вас может иметь в конце данной стать!

Как печатать на 3D-принтере

Подготовка

На примере тестовой фигуры «Отверстия и колонны» мы покажем, как правильно подготовить объект и напечатать его на принтере Ultimaker. В первую очередь установите 3D-редактор SketchUp. Затем надо «научить» его понимать распространенный в 3D-печати формат STL. Делается это с помощью плагина, который можно скачать по адресу extensions.sketchup.com. После того как вы скопировали его файл на диск, откройте SketchUp, зайдите в меню «Window | Preferences | Extensions», нажмите на кнопку «Install Extension» и укажите расположение файла плагина.

Создаем собственный объект

В стартовом окне SketchUp выберите шаблон «Product design and Woodworking — Millimeters». Программа создаст пространственную систему координат, которую можно увеличивать или уменьшать, вращая колесо мыши, а нажав на него — поворачивать. Красная ось показывает ширину предмета, синяя — высоту, а зеленая — глубину. Чтобы создать прямоугольную форму нашего тестового объекта, сначала вытяните основную фигуру. Для этого на панели инструментов выберите «Restangle».

Особенность программы SketchUp состоит в том, что в начальной точке объекта (в нашем случае — в центре координатной системы) нужно щелкнуть клавишей мыши и, не отпуская ее, тянуть. Установите курсор в области между зеленой и красной координатами.

Чтобы точно задать размеры фигуры, просто введите на клавиатуре «110;40» и нажмите «Enter» — получится прямоугольник с шириной и высотой 110 и 40 мм соответственно. Затем с помощью инструмента «Push/Pull» из двухмерного прямоугольника можно сформировать трехмерный. Щелкните по прямоугольнику и потяните его вверх. Чтобы точно задать высоту в 10 мм, просто введите клавишами значение «10» и затем нажмите «Enter».

Уточняем форму

Теперь добавьте колонны и отверстия, на которых принтер должен будет показать точность своей работы. Для этого инструментом «Circle» нарисуйте круги на поверхности прямоугольной фигуры. Чтобы добиться их точного расположения, создайте временные вспомогательные линии и используйте линейку. Точный размер радиуса круга вводится с помощью клавиатуры.

Ряды кругов можно поворачивать на 180° с помощью инструмента «Rotate» и копировать, нажав на клавишу «Ctrl». Теперь инструментом «Pull/Push» с одной стороны прямоугольника нажмите на круги, чтобы получить отверстия, а с другой стороны вытяните их вверх, чтобы получить колонны.

От SketchUp — к программе принтера

Ваша модель готова. Щелкните по «File | Export to DXF or STL». Если такого пункта меню нет, это значит, что при установке STL-плагина произошла какая-то ошибка (см. шаг 1). Подтвердите запросы «Export entire model?» и «Export unit: Millimeters». Под «Export to DXF options» выберите формат «stl». Сохраните файл с расширением «.stl». В программе принтера (в нашем примере это приложение Cura для устройства Ultimaker) загрузите модель через меню «File | Load Model file …». После этого задайте такие основные параметры, как качество печати и материал. Зайдя в «File | Save GCode», сохраните модель как готовое задание на печать.

Если в процессе печати что-то пойдет не так, вернитесь к компьютеру и кликните по «Expert | Switch to full settings …» — здесь вы сможете точно подобрать для печатаемого предмета такие настройки, как толщина слоя, степень заполнения основы, свисающих элементов и пустот, а также скорость и температуру печати. Затем скопируйте файл с расширением «.gcode» на карту памяти SD.

Обклеиваем печатную платформу

Из руководства к своему принтеру узнайте, следует ли обклеить печатную платформу самоклеющейся пленкой. В случае с Ultimaker это необходимо, так как горячая печатная головка может расплавить платформу, сделанную из оргстекла, и это не позволит снять с нее готовый предмет. Катушка клейкой ленты входит в комплект устройства.

Если она кончится, возьмите вместо нее обычную малярную крепированную ленту (малярный скотч). Выньте печатную пластину и постарайтесь, чтобы полосы ложились на нее без морщин и нахлестов. Лучше всего это удается, если выравнивать следующую полосу по длинной стороне предыдущей и потом плотно прижимать ее.

Готовимся и начинаем

Перед каждым процессом печати следует проверить положение печатной платформы и при необходимости откорректировать его. Подробное руководство для принтера (см. wiki.ultimaker.com/Calibrate) занимает многие страницы. В принципе, для вас важно так отрегулировать четыре винта по углам платформы (см. фото справа), чтобы расстояние между печатающей головкой и поверхностью платформы везде было равно толщине обычного листа бумаги.

Вставьте карту SD с сохраненным на ней файлом «.gcode» в контроллер принтера и выберите пункт «Card Menu». На дисплее будут перечислены все файлы с расширением «.gcode», которые устройство обнаружит на карте. Выбрав нужный файл, запустите печать.

Устраняем ошибки

При первых попытках печати настоятельно рекомендуется регулярно проверять ход процесса и останавливать его при возникновении проблем. Незаконченный предмет при этом приходит в негодность. Так, во время наших тестов на принтере Ultimaker иногда происходили задержки загрузки материала. Чтобы временно остановить подачу материала, принтер немного оттягивал пластиковую нить назад.

Уже разогретый пластик при новой подаче задерживался перед экструдером и вызывал затор. В этом случае необходимо сначала вытянуть сверху из экструдера весь материал. Горячее сопло следует чистить осторожно, используя две скрученные жилы медного кабеля. Устранив затор, попытайтесь выяснить причину ошибки печати на сайте производителя. Затем исправьте ее (например, оптимизировав настройки печати перед сохранением файла «.gcode») и запустите новую попытку.

Окончательная обработка предмета

Когда процесс печати завершен, осторожно снимите готовый предмет, начиная с краев. При необходимости используйте тонкий шпатель. Обломите выступающие края, поддерживающие элементы и свисающие нити. Мелким напильником или шлифовальной шкуркой удалите ненужные остатки материала. Предмет можно покрасить обычными лаками или красками, в некоторых случаях поможет грунтовка для пластика. Лучше всего сначала проверить совместимость материалов на старых, неудачно напечатанных предметах.

ФОТО: Creative Tools/Flickr.com

Как 3D-печать меняет мир / Хабр

Новая эпоха технической революции

С каждым годом 3D-печать становится всё более массовой. По данным исследовательской группы CONTEXT, в 2015 году был отгружен 500-тысячный 3D-принтер, а к 2017 году продано около миллиона устройств. 3D-печать уже внедряется в качестве производственной технологии. Например, в 2016 году компания General Electric стала продавать авиационные двигатели с топливными форсунками, напечатанными на 3D-принтере. Ракеты Атлас-5 с деталями, напечатанными той же технологией, запустили в космос. Бренды Under Armour и New Balance пустили в продажу небольшие партии спортивной обуви, частично напечатанной на 3D-принтере, а компания Organovo запустила коммерческую биопечать тканей почек человека.

Пока что, это только фундамент. За всю историю человечества было множество технологических революций, каждая из которых проходила через три фазы. Первой идёт «концептуализация», когда формируются видения и идеи, которые определяют дальнейший путь. Затем «реализация», в течение которой кажущиеся ранее невозможными замыслы начинают частично реализовываться. И третья фаза — «массовая коммерциализация», когда предприятия осваивают производство и применение новой технологии.

И на какой же фазе находится 3D-печать? Применение 3D-принтера для превращения цифрового файла в физический объект уже получило широкое распространение. Например, в таких областях как инженерия, право, экономика, бизнес, география и искусство. Уже ведутся споры о последствиях обмена цифровыми объектами через интернет, чтобы тут же распечатать их на принтере (допустим огнестрельное оружие). Очевидно, что мы ещё далеки от того дня, когда персональные 3D-принтеры положат конец капитализму, передав производство в руки большинства. Тем не менее, не остаётся сомнений в том, что революция в области 3D-печати добралась до второй фазы — реализации.

К сему моменту изобретено достаточно методов изготовления твёрдых объектов путём печати их множеством тонких последовательных слоев. На самом деле, наиболее распространённые технологии 3D-печати существуют уже несколько десятилетий.

Хотя технология продолжает развиваться, предположу, что до последней революционной фазы — массовой коммерциализации — остаётся около десяти лет. Пионеры 3D-печати уже используют её для изготовления самых разных вещей. Тем не менее, этот рынок по-прежнему остаётся нишевым и ограничен в коммерческом применении. В частности, это компании где занимаются мелкосерийным, штучным производством или товаров, которые невозможно изготовить традиционными методами.

Несмотря на вышеупомянутое, мы должны помнить, что десять лет назад ни один промышленный сектор не сообщал о продаже продуктов, полностью или частично изготовленных с помощью 3D-принтера. Поэтому происходящее сейчас — впечатляет. По мере развития методов 3D-печати и появления новых, а также того, как старые процессы становятся быстрее и дешевле, стоит ожидать, что 3D-печать приблизиться к фазе массовой коммерциализации в конце 2020-х или начале 2030-х годов. Новаторы этой области планируют воспользоваться преимуществами технологии задолго до этого.

Технология 3D-печати

И как же устроена 3D-печать? В значительной степени, она является эволюцией 2D-печати, уже используемой повсеместно в офисах и домах.

Большинство из нас знакомы со струйными или лазерными принтерами, которые позволяют печатать документы или фотографии. Они создают их, управляя нанесением чернил или тонера на поверхность листа бумаги. Подобным образом и 3D-принтеры производят объекты, контролируя размещение и адгезию последовательных слоёв «строительного материала» в трёхмерном пространстве. По этой причине 3D-печать также известна, как «аддитивное производство слоёв» (ALM — Additive Layer Manufacturing) или «аддитивное производство» (АП или AM — Additive Manufacturing).

Чтобы напечатать объект на таком принтере, потребуется цифровая модель на компьютере. Её можно создать с помощью приложения для автоматизированного проектирования (САПР) или другого ПО под трёхмерное моделирование. Также, цифровая модель может быть захвачена путём сканирования реального объекта 3D-сканером и обработкой с помощью CAD или других программ.

Затем модель необходимо пропустить через ещё одну программу «для нарезки», которая разделит цифровой объект на множество слоёв поперечного сечения — обычно толщиной около 0,1 мм. Эти цифровые ленты отправляются на 3D-принтер, который изготавливает их одну поверх другой, пока не будет сформирован реальный предмет.

3D-модель в Cura — популярной программе для нарезки с открытым исходным кодом

Та же модель, которую печатает настольный 3D-принтер Ultimaker

Готовая игрушка

То, как 3D-принтер вырисовывает объект по одному слою за раз, зависит от технологии, на которой он построен. Существует множество методов 3D-печати и их можно разделить на 4 категории.

  • К первой категории относятся принтеры, которые создают объекты путём экструзии расплавленного полужидкого материала из сопла печатающей головки. Чаще всего это термопластик, который быстро затвердевает, покинув печатающую головку. Другие 3D-принтеры, основанные на экструзии, производят объекты, выводя расплавленный металл или шоколадную глазурь (для печати кулинарных творений). Есть также принтеры, которые используют бетон, керамическую пасту или глину.
  • Вторая категория 3D-принтеров создаёт слои объектов путём выборочного затвердевания жидкой смолы, известной как «фотополимер», застывающий при воздействии лазера или другого источника света. Некоторые из таких машин создают слои объектов внутри резервуара с жидкостью. А другие выпускают слой смолы из печатающей головки, и используют ультрафиолет, чтобы закрепить его перед нанесением следующего слоя. Есть приборы, которые смешивают несколько разных фотополимеров в одном задании на печать, что позволяет им выводить цветные объекты, сделанные из нескольких материалов. В частности, один из таких принтеров — J750 от Stratasys — предлагает палитру из 360 тысяч оттенков и может изготавливать объекты из смеси различных материалов.
  • Третья и самая распространённая категория оборудования создаёт слои, выборочно склеивая гранулы очень тонкого порошка. Такое «связывание гранулированных материалов» достигается путём нанесения клея на слои порошка или плавлением гранул лазером или другим источником тепла. Существует множество видов порошковой адгезии на основе различных материалов. К ним относятся нейлон, воск, бронза, нержавеющая сталь, кобальт-хром и титан.
  • Последняя категория 3D-принтеров построена на ламинировании. Последовательные слои вырезанной бумаги, металла или пластика склеиваются, образуя твёрдый объект. Если в качестве строительного материала используются листы бумаги — они разрезаются лезвием или лазером, затем склеиваются. На них можно распылять краску в процессе печати для создания недорогих полноцветных трёхмерных объектов.

Рынок и применение

3D-печать используется для создания прототипов, изготовления пресс-форм, прямого цифрового и индивидуального производств. Поставщики оборудования, программного обеспечения и материалов для 3D-печати уже обслуживают потребности различных секторов рынка. И сейчас мы рассмотрим эти области применения, чтобы понять за счёт чего развивается технология трёхмерной печати.

Быстрое прототипирование

Чаще всего 3D-принтеры применяются для быстрого прототипирования (RP — Rapid Prototyping). К этому относятся концепты и функциональные прототипы. Концепты представляют собой простые, нефункциональные «черновики» дизайна продукта (например, бутылка без съёмной крышки) и предназначены для того, чтобы художники могли воссоздать свои идеи в физическом формате. Функциональные прототипы напротив — более сложны и позволяют оценить форму, соответствие и функции каждой части продукта перед тем, как пустить его в производство.

Функциональные прототипы и концепты создавались ещё до появления 3D-принтеров с использованием трудоёмких методов и инструментов. Поэтому на их производство нередко уходят много дней, недель или даже месяцев, а стоимость составляет тысячи или десятки тысяч долларов. 3D-принтеры могут создавать концепты и функциональные прототипы за несколько дней или даже часов, и за небольшую часть от стоимости традиционными способами изготовления. К примерам из этой отрасли можно отнести концепты автомобилей для Формулы-1.

Помимо экономии времени и денег, печать прототипов позволяет выводить на рынок улучшенные продукты, поскольку дизайн обычно проходит через множество итераций. Например, производитель термосов Thermos использует 3D-принтеры компании Stratasys для изготовления прототипов за часы, а не дни, и за пятую часть стоимости производства от внешнего поставщика. Поскольку дизайнеры теперь могут «создавать столько прототипов, сколько потребуется», компания смогла доработать до совершенства такие характеристики продукта, как крепление крышки и удобство разливки.

Технология 3D-печати в цвете из различных материалов и металлов продолжает развиваться, поэтому ассортимент и качество продуктов, включая их компоненты, которые можно быстро прототипировать, продолжают увеличиваться. Так компания Nano Dimension продемонстрировала настольный 3D-принтер — DragonFly 2020, который может изготавливать функциональные прототипы печатных плат. Это оборудование использует струйную технологию для вывода высокопроводящих «наночернил» и может производить многослойные платы, включая все соединения между слоями. В то время, когда многие компании ждут дни или недели, чтобы получить прототип платы от внешнего поставщика, аппарат напечатает её за считанные часы.

Пресс-формы и другие инструменты производства

Помимо прототипов, 3D-принтеры используются для изготовления пресс-форм и других приспособлений для производственного оборудования. Пресс-форма нужна для того, чтобы отливать в ней металлы или пластмассы. Как и прототипы, пресс-формы традиционно изготавливались вручную. Поэтому применение 3D-принтеров поможет сэкономить время и деньги крупным производителям. Например, используя принтеры Fortus компании Stratasys, автомобильный гигант Volvo Trucks из Лиона во Франции сократил время, необходимое для изготовления некоторых комплектующих двигателей — с 36 дней до 2.

В августе 2016 года американская Oak Ridge National Laboratory напечатала на 3D-принтере инструмент для торцовки и сверления 5,34 x 1,34 x 0,46 м для компании Boeing. Он применяется при строительстве пассажирских самолётов, и был напечатан из армированного углеродным волокном пластика примерно за 30 часов. Раньше изготовление такой детали заняло бы три месяца. Как объяснил Лео Кристодулу из Boeing: «Инструменты аддитивного производства, такие как инструмент для триммирования крыла: сэкономят энергию, время, рабочую силу и производственные затраты. Также они являются частью нашей стратегии по применению технологии 3D-печати в производственных областях».

Ещё одно многообещающее применение — производство пресс-форм, используемых для литья металлов. 3D-принтеры способны изготавливать требуемые формы, а также любые дополнительные стержни, необходимые для размещения внутри них. Процесс осуществляется путём нанесения тонких слоёв формовочного песка, которые скрепляются связующим веществом. Полученные в результате 3D-распечатка формы отправляется в литейный цех, где в неё заливают расплавленный металл для получения готового изделия.

ExOne — одна из компаний, специализирующихся на производстве 3D-принтеров для аддитивного производства при помощи литейного песка. Как утверждает компания, с помощью 3D-печати форм и стержней из литейного песка производители могут не только сэкономить время и снизить затраты, но также повысить точность и отливать более сложные детали. Это связано с тем, что формам и стержням, напечатанным на 3D-принтере, не требуется постобработка, которая могла нанести им повреждения.

Сердечник, отлитый в форме, которая изготовлена на 3D-принтере ExOne

3D-принтеры также можно использовать для изготовления пресс-форм, которые нужны для литья пластмассовых деталей под давлением. Такие формы обычно стоят десятки тысяч долларов и традиционно изготавливаются из алюминия. Технически, 3D-принтер уже может изготавливать алюминиевые формы для литья под давлением с помощью металлического порошка. Но в настоящее время принтеры изготавливают такие формы из смолы при помощи фотополимеризации. Формы из пластмассы не такие износостойкие, как их алюминиевые аналоги. Но они дешевле, быстрее производятся и их можно использовать для изготовления до 200 пластиковых деталей, прежде чем потребуется замена.

Компания Bi-Link, базирующаяся в Блумингдейле штата Иллинойс, занимается 3D-печатью малотиражных пресс-форм для литья под давлением. Она изготавливает детали для производителей электроники и медицинского оборудования по всему миру. Принтер ProJet 3500 HD Max от 3D Systems создаёт форму за часы, вместо недель. Как отметил директор по исследованиям и разработкам Франк Зиберна: «Клиенты в восторге от этой услуги. Раньше приходилось ждать две-три недели, чтобы получить только инструменты, — не говоря уже о тестовых деталях. С помощью ProJet 3500 HD Max можно изготавливать для одного заказчика четыре различных конструкции в течение шести дней, отправив ему 10-12 деталей для каждой итерации за ночь».

Некоторые компании занимаются созданием машин, способных печатать объекты из воска (или его заменителей), чтобы создавать формы для литья по выплавляемым моделям. Восковой объект печатают на 3D-принтере, затем вокруг него формируют форму из такого материала, как гипс. После форма нагревается, в результате чего воск «выгорает» и стекает. Затем в форму заливают расплавленный металл или другой жидкий материал для создания готового изделия. Применение 3D-принтеров для создания восковых моделей довольно распространено в производстве ювелирных изделий и других отраслях, специализирующихся на сложных и дорогостоящих предметах. Как и пресс-формы для литья под давлением, восковые образцы являются расходным материалом, поскольку процесс создания готового изделия приводит к их разрушению.

Прямое цифровое производство

На нескольких нишевых рынках, 3D-принтеры уже используются для производства готовых промышленных компонентов и даже потребительских товаров. Такая разработка именуется как «прямое цифровое производство» (DDM — Direct Digital Manufacturing) и приобретает всё большую популярность, например, в авиации. Airbus и Boeing устанавливают десятки тысяч компонентов своих самолётов, напечатанных на 3D-принтере.

К другим отраслям DDM относятся автомобилестроение, медицина, производство ювелирных изделий и обуви. Одним из ведущих пионеров считается Nike. По словам главного операционного директора Эрика Спранка, компания «сделала ряд открытий в области дизайна и производства с помощью 3D-печати, которые позволят создавать совершенно новую индивидуальную систему амортизации обуви». С этой целью Nike строит «Центр Создания Передовых Продуктов» (Advanced Product Creation Center) площадью около 11-ти тысяч квадратных метров для размещения 3D-печати и других технологий проектирования и производства.

Вполне возможно, что в будущем с помощью 3D-принтера будет изготавливаться всё что угодно, включая даже человеческие органы. Наиболее заметно это в стоматологии: восковые модели, ортодонтические аппликации, примерки, хирургические шаблоны и модели виниров теперь печатаются на 3D-принтере.

Помимо создания неорганических протезов, существуют «биопринтеры», которые наращивают человеческую ткань, накладывая слой за слоем живые клетки. Такая технология может совершить революцию в области медицины, к примеру, убрав очереди в доноростве органов. Компания Organovo — пионер биопечати — уже продаёт распечатанные ткани печени и почек для использования при тестировании на наркотики.

В дополнение к биопечати тканей вне тела, биопечать на нём или внутри раны уже находится в стадии разработки. Она включает в себя печать слоёв культивированных клеток непосредственно на рану или даже внутри с использованием методов хирургии «замочной скважины». Когда такая технология станет достаточно продвинутой, пациенту просто потребуется ввести инструмент в рану, который удалит повреждённые клетки и заменит их новыми. Эти инструменты смогут даже залечить рану, образовавшуюся при их введении.

Индивидуальное производство

Параллельно с ростом промышленной 3D-печати наблюдается рост индивидуального производства. Это все ситуации, когда предприниматель печатает на 3D-принтере собственные вещи, минуя запуск производства на удалённой фабрике. На рынке уже есть несколько сотен профессиональных 3D-принтеров по цене от 230 долларов.

В дополнение к растущему количеству персональных машин, растёт количество бесплатных и платных трёхмерных моделей, которые можно загрузить для распечатки. На ресурсе Thingiverse размещено более миллиона бесплатных моделей – некоторые из них можно адаптировать под требования пользователя. Вполне возможно, что предоставление такого контента станет фундаментом для массового персонального производства, поскольку устранит необходимость в творческих и инженерных навыках.

В настоящее время персональные и профессиональные 3D-принтеры ограничены в возможностях применением термопластика или композитов, а также фотополимерных смол. Поэтому ассортимент и качество изделий, которые можно изготовить на таком оборудовании, остаются низкими. При этом, всё большее количество облачных сервисов 3D-печати, таких как Shapeways и i.materialise, позволяют любому загружать 3D-объект, который будет распечатан на промышленном оборудовании. Скорее всего, именно доступ к такой услуге – а не продажа персональных 3D-принтеров – станет движущей силой для революции индивидуального производства в течение следующих пяти-десяти лет.

Если большинство людей начнёт изготавливать требуемые им продукты самостоятельно – это окажет серьёзное влияние на многие отрасли. Компании, торгующие запчастями, уже опасаются угрозы массового изготовления личных вещей. Того же боятся представители транспортного секторов и логистики, потому что это изменит спрос на их услуги.

В 2014 году IBM Institute for Business Value опубликовал отчёт, в котором выделены четыре варианта будущего для индивидуального производства. И сейчас мы кратко с ним ознакомимся.

  • Двумя неизвестными является скорость, с которой будет развиваться технология 3D-печати, и готовность потребителей принять индивидуальное производство. Если технологии будут совершенствоваться медленно, а потребители не станут применять 3D-печать в домашних условиях, — тогда мы увидим «тихую революцию» с постепенными изменениями.
  • Есть и альтернатива: технологии развиваются медленно, но потребители желают стать производителями, — тогда нам ждёт «производственная революция», когда всё больше необходимых вещей будет изготавливаться мелкими предпринимателями.
  • Ещё один вариант: технология 3D-печати совершит рывок, но потребители оставят её без внимания, — тогда такая печать станет основной технологией в промышленном производстве, и не окажет большого влияния на потребительский рынок.
  • И последний ход событий: 3D-печать быстро развивается, а потребители её активно используют, — тогда мы станем свидетелями «переосмысления потребления». Это означает появление крупных и мелких торговцев, предлагающих продукты, напечатанные на 3D-принтере по вашему запросу. Также появится множество людей, «печатающих» в своих домах, гаражах, на кухнях или в офисах и ангарах.

Я же предполагаю, что вовлечение потребителей в 3D-печать будет расти вместе с совершенствованием технологии, но медленными темпами. Это означает, что в течение следующих нескольких десятилетий мы постепенно перейдём от «тихой революции» к «производственной революции», а затем и к «переосмыслению потребления».

Развитие индустрии 3D-печати

Существуют различные сегменты рынка 3D-печати, и находятся они на разных стадиях развития. Самые первые 3D-принтеры стали изготавливать прототипы в конце 1980-х годов, а использование печати для создания пресс-форм началось только через несколько лет после этого. Задолго до начала 2000-х появились первые готовые продукты и произведения искусства, распечатанные с помощью этой технологии. Наконец, изготовление на заказ стало возможным только в 2007 году с появлением первых 3D-принтеров с «открытым исходным кодом», которые частные лица могли себе позволить.

Я считаю, что половина всех прототипов станет изготавливаться на 3D-принтере уже к 2025 году. Однако, трёхмерная печать — не единственная технология быстрого прототипирования. Есть случаи, когда традиционные методы лучше подходят для производства прототипов. Невозможно представить, чтобы изобретатели перестали лепить вещи из глины, дерева, бумаги, металла, и всего остального, что есть в доступе на их кухнях, студиях, лабораториях, мастерских и сараях.

Что касается 3D-печати пресс-форм и инструментов производства — этот рынок в настоящее время отстаёт от быстрого прототипирования, но очень скоро станет основой аддитивного производства. Предполагаю, что для его насыщения потребуется минимум десятилетие. Поговорив с производителями промышленных 3D-принтеров — я в этом убедился. В большинстве отраслей, 3D-печать пресс-форм и других инструментов — представляет крупнейшую рыночную возможность.

В прямом цифровом производстве — такое только начинает происходить, хотя в настоящее время, это очень нишевый вид деятельности. Однако, в ближайшие десять лет или около того многие отрасли, в первую очередь авиакосмическая промышленность, автомобильный сектор, здравоохранение, мода, обувь и дизайнерские товары, будут использовать 3D-печать в качестве одной из своих основных производственных технологий. Это позволит создавать совершенно новые виды продукции и привлечёт внимание СМИ. И даже в этом случае, через 10 или 20 лет подавляющее большинство объектов в нашей жизни по-прежнему будет производиться традиционными методами.

Точно так же, в течение многих десятилетий изготовление личных вещей будет составлять нишевый сегмент рынка как в индустрии 3D-печати, так и в общемировом производстве. В настоящее время, не более 10% доходов индустрии 3D-печати формируется за счёт продажи персональных принтеров. Многие такие машины продаются компаниям, а не частным лицам. Но это не означает, что продажа персонального оборудования для домашнего использования не представляет рыночных возможностей.

Можно утверждать, что домашнее производство не станет движущей силой революции 3D-печати — и многие участники отрасли, с этим согласны. Тем не менее, буду ждать с нетерпением 3D-принтеров за 99 долларов, которые смогут изготавливать небольшие пластиковые предметы на основе модели, отправленной с планшета или смартфона.

Изготовление новых продуктов новыми способами

Как и предшествовавшая интернет-революция, 3D-печать позволяет компаниям и частным лицам достигать ранее невозможного. И причина не только в создании прототипов и старых вещей новыми способами. Она делает это в соответствии с новыми бизнес-моделями. Давайте обозначим эти ключевые преимущества.

Разовое и мелкосерийное производство

При использовании традиционных методов, разовое и мелкосерийное производство стоит дорого, а зачастую и непомерно. Когда вещи печатаются на принтере, практически нет разницы в стоимости на единицу — то есть не важно требуются 1, 100 или 1000 копий, поскольку нет затрат на инструменты и рабочих. Поэтому во многих ситуациях, когда требуется несколько сотен или меньше компонентов, 3D-печать станет наиболее экономичным способом. Именно по этой причине, 3D-печать так широко применяется в быстром прототипировании и находит всё большее применения при производстве пресс-форм и других инструментов.

Джей Лено, который увлекается коллекционированием автомобилей, уже пользуется 3D-печатью для разового производства. В качестве примера: когда на редком концептуальном автомобиле EcoJet потребовалось заменить некоторые сломанные вентиляционные отверстия, он обратился в 3D Systems. Компания отсканировала сломанные детали, отремонтировала их в цифровом виде с помощью программы CAD и отправила полученные данные поставщику услуг Quickparts. Там новые вентиляционные отверстия напечатали на 3D-принтере из лёгкого нейлонового материала с наполнителем из волокон под названием DuraForm HST. В результате были получены надёжные запасные части, у которых соотношение прочности и веса стало лучше, чем у оригинала.

3D-печать используют при изготовлении реквизита для телешоу, кино и театральных постановок. С помощью этой технологии SpaceX печатает камеры двигателя космического корабля Crew Dragon, а NASA напечатала около 70 деталей для марсохода.

Кастомизация и персонализация

Помимо упрощения мелкосерийного производства идентичных вещей, трёхмерная печать позволяет настраивать продукцию в соответствии со вкусами покупателя и его физическими потребностями. Например, компания Robot Bike Co. использует технологию, чтобы изготавливать раму горного велосипеда R160 под заказ. Она создаётся из углеродного волокна, проходящего между титановыми выступами, которые печатаются на 3D-принтерах Renishaw. На сайте Robotbike.co покупатель вводит свой рост, размер ног и размах рук, что позволяет получить раму индивидуально под себя.

Велосипед R160 — отличный пример реального продукта, который сочетает в себе детали, напечатанные на 3D-принтере, с другими стандартными компонентами. Это позволяет предложить продукт в соответствии с индивидуальными запросами экономичным способом. Я уверен, что со временем многие компании осознают потенциал «изделий на заказ» путём 3D-печати определённых деталей.

Оптимизация дизайна и сборки

Ещё одно ключевое преимущество 3D-печати состоит в том, что она снимает ограничения традиционных методов производства. Хотя дизайнер может придумать любой дизайн продукта, но если его компоненты нельзя отлить в форму, обработать и собрать — продукт никогда не появится на рынке. А в «дивном новом мире» 3D-печати можно создавать вещи, которые ранее было невозможно изготовить. Например, такой принтер может изготовить цепочку или ожерелье, состоящее из звеньев, которые не имеют разрывов и, следовательно, никогда не разойдутся.

Команда TransFIORmers, участвующая в соревнованиях по мотогонкам, использовала 3D-принтер Renishaw для печати из металла, чтобы изготовить новую подвеску оптимизированной конструкции. Первоначальный вариант вручную изготавливался из стали, и при этом — для сборки требовалось двенадцать деталей, которые необходимо сваривать вместе. Но с помощью 3D-печати, команда смогла объединить конструкцию в единый титановый компонент, который не требовал сборки, что привело к снижению веса на 40% — критически важной характеристики для гонок.

Используя пластмассовые или полимерные материалы, некоторые принтеры могут создавать рабочие, предварительно собранные, составные механизмы, такие как коробка передач. Традиционно, производство многокомпонентных изделий включает этап окончательной сборки. Но когда вещи напечатаны на 3D-принтере — в этом нет необходимости.

Свободный доступ к рынку

Помимо улучшения характеристик продуктов, трёхмерная печать позволит гораздо большему количеству людей стать производителями. Это связано с тем, что стоимость прототипов и производственных инструментов больше не будет чрезмерно высокой, поэтому 3D-печать делает малотиражное производство всё более жизнеспособным. Но что важнее, доступность сервисов услуг 3D-печати позволит практически любому талантливому художнику или дизайнеру найти рынок для своих творений.

Сегодня частному лицу или даже небольшой компании очень сложно вывести продукт на рынок, не говоря уже о глобальном масштабе. Одно из немногих исключений — это книгоиздание, где автор может создавать и распространять продукт, который печатается по запросу. Например, жители Великобритании могут заказать печатную книгу через Amazon и в течение восьми часов им доставят книгу, напечатанную на складе корпорации. Это нововведение позволяет авторам продавать книги без предварительной печати и распространения.

Аналогичным образом 3D-печать позволяет отдельным дизайнерам выпускать продукты на рынок без вложений в оборудование и предварительно изготовленные копии. Например, более 8 тысяч дизайнеров уже открыли интернет-магазины на площадке поставщика услуг 3D-печати — компании Shapeways. В качестве примера, рассмотрим магазин известного создателя ботов — Кидмехано (Kidmechano). Его творением являются «Modibot», которые представляют собой постоянно расширяющуюся линейку фигурок, напечатанных на 3D-принтере, с шарнирной конструкцией. Можно сравнить Modibot с Lego или Трансформерами.

Кидмехано использует платформу Shapeways для продажи более 400 различных фигурок и аксессуаров ModiBot, включая доспехи и оружие. Цены начинаются от нескольких долларов, и когда заказ сделан, Shapeways печатает всё, что требуется, отправляя готовый продукт покупателю, а Кидмехано — его долю выручки.

Цифровое хранение и транспортировка

Помимо обеспечения возможности мелкосерийного производства, экономичности и демократизации доступа к рынку, 3D-печать упростит хранение цифровых объектов и их транспортировку. Это означает, что в будущем станет два варианта отправки посылки. Первый заключается в отправке физического товара курьером или по почте, а второй — передачей цифрового файла через интернет для 3D-распечатки на месте получателем.

Многие регулярно публикуют тексты, фотографии и видео в интернете, а благодаря 3D-печати — цифровые объекты скоро будут добавлены в социальные сети. Таким образом, делая возможным цифровое хранение и транспортировку, 3D-печать сделает с вещами то, что компьютеры и интернет уже сделали для хранения и передачи информации.

В некоторых отраслях хранилище цифровых объектов уже начинает приносить пользу. Например, большинству стоматологов традиционно приходилось хранить огромное количество гипсовых слепков, снятых с ротовой полости пациентов. Хотя они использовалось только один раз, не было возможности предсказать: потребуются ли они в будущем, что привело к архивам с коробками и шкафами, заваленным гипсовыми моделями. Но теперь стоматологи переходят на цифровые технологии: 3D-сканеры и 3D-принтеры заменяют альгинатные формы и гипсовое литье. Это позволяет сохранять оттиски ротовой полости пациента в цифровом виде, для будущей 3D-распечатки в случае необходимости.

Экономия материалов и последствия для экологии

Помимо вышеупомянутых возможностей, 3D-печать экономит материалы производителям, что особенно важно для устойчивого развития. Сегодня фабрики начинают производство с блока металла или другого сырья, а затем режут его: обрабатывают токарным станком, напильником, сверлом или иным образом, чтобы сформировать окончательный продукт. Напротив, 3D-печать — это аддитивная деятельность, которая берёт такое количество материала, из которого состоит готовое изделие. Поэтому, мы получаем значительную экономию сырья, если изготавливать вещи при помощи этой технологии.

Кроме того, продукты 3D-печати могут иметь внутреннюю структуру, оптимизированную под расход минимального количества материалов. К примеру, пластиковые или металлические детали, напечатанные на принтерах, могут изготавливаться с внутренними полостями или открытой решёткой — чего почти невозможно добиться с использованием большинства традиционных технологий. Опять же, это приводит к экономии материалов, а также к созданию более лёгких деталей, которые, например, уменьшат потребление топлива самолётов и других транспортных средств.

3D-печать может оказаться краеугольным камнем будущего перехода к «местному цифровому производству» (LDM — Local Digital Manufacturing). Сегодня большая часть производства осуществляется на заводах, удалённых от своих клиентов. Как следствие, на хранение и транспортировку уходят огромные количества нефти и других ресурсов. Учитывая сокращение запасов природных ресурсов и меры по борьбе с изменением климата — в течение одного-двух десятилетий, такие способы перевозки и хранение могут оказаться невыполнимыми или культурно неприемлемыми. Таким образом, защита экологии может оказаться силой, стимулирующей массовое внедрение 3D-печати, чтобы способствовать изготовлению товаров на местных производствах.

Трудности можно преодолеть!

Как и любая новая технология, 3D-печать может иметь как негативные, так и позитивные последствия. К примеру, есть опасения, что дальнейшее её развитие сократит рабочие места. И это вполне вероятно для некоторых профессий. В особенности для тех, кто производит прототипы, пресс-формы и инструменты традиционными методами.

Вполне возможно, что занятость в странах, которые готовят продукцию на экспорт, станет сокращаться по мере освоения технологией местными производствами. В своём обращении «О положении страны» 2013 года президент Обама отметил 3D-печать, как технологию, «способную произвести революцию во всём, что мы делаем», и таким образом вернуть рабочие места из Азии обратно в США. Другими словами, глобальные экономические последствия развития 3D-печати были признаны на правительственном уровне одной из крупнейших экономик мира.

Очевидно, что трёхмерная печать поможет создать и новые рабочие места. Пройдет ещё много времени, прежде чем мы сможем печатать готовые продукты на 3D-принтере без помощи квалифицированного специалиста. По мере распространения технологии появятся новые вакансии, и такая занятость будет равномерно распределяться по региону — что не характерно для промышленных революций прошлого.

Некоторые отрасли также могут выиграть от распространения 3D-печати. Не в последнюю очередь, логистический сектор уже осознаёт эти возможности. Например, в июле 2014 года, в публикации Почтовой Службы США отмечалось, что оператор услуг может «получить огромную выгоду» от распространения 3D-печати по причине ожидаемого увеличения доставок мелких посылок. В частности прогнозировалось, что технология может привести к увеличению доходов местной службы доставки посылок на 486 миллионов долларов в год. Прогноз основывался на предположении, что большинство товаров, напечатанных на 3D-принтере, будут производиться в местных бюро обслуживания, откуда их нужно будет доставлять к домам людей.

Помимо воздействия на занятость, есть ещё две проблемы: нарушение прав интеллектуальной собственности и использование 3D-печати в преступных целях. Уже сейчас можно использовать бытовое оборудование для сканирования объекта, например модели Микки Мауса, а затем печати его пластиковой копии. Подобно тому влиянию, которое музыка в формате mp3 и интернет оказали на музыкальную индустрию — 3D-печать может повлиять на права интеллектуальной собственности.

Что ещё тревожнее, уже возможно напечатать огнестрельное оружие на 3D-принтере. В настоящее время, персональный 3D-принтер за 230 долларов способен изготовить только одноразовый пластиковый пистолет. Но когда появится доступная возможность печати из металла, у нас возникнут серьёзные проблемы.

Последнее «минное поле», связанное с 3D-печатью и изготовлением личных вещей, — это здоровье и безопасность. Сегодня почти все продукты, которые мы покупаем, соответствуют определённым стандартам и проходят испытания. При этом производители несут ответственность за любые несчастные случаи и травмы, которые могут возникнуть в результате выхода их из строя или неисправности. Но кто будет нести ответственность, если, например, ребёнок загрузит бесплатную игрушку с сайта, распечатает её и отдаст младшему — а тот проглотит отломанный от неё кусок и задохнётся? Будет ли вина лежать на человеке, разработавшем объект; сайте, через который он был опубликован, производителе 3D-принтера, поставщика расходных материалов или на родителе, который это допустил? Сейчас нет ответа на этот вопрос. И довольно скоро, мы не сможем это игнорировать.

В мире первопроходцев

Революция 3D-печати, как и любая другая технологическая революция — продукт действий, энергии и видения тех людей, которые достаточно храбры, чтобы её осуществить. За последние несколько лет мне посчастливилось взять интервью у многих пионеров 3D-печати. И поскольку моя цель — захватить ваше воображение, а не сосредотачиваться на деталях и технических подробностях, поэтому я задал им фундаментальный вопрос: «Почему вы выбрали именно эту технологию?».

Одним из первых, с кем я общался, стал Ансси Мустонен — руководитель финской компании по 3D-печати и дизайну AMD-TEC. По мнению Ансси, 3D-печать позволяет предоставить клиентам качественный уровень обслуживания:

«Мы живем в беспокойном мире, но благодаря этой технологии можно предоставить клиентам качественные услуги. Что касается прототипов: у меня нет времени программировать и отправлять заказы внешним поставщикам для получения деталей. 3D-печать — не единственный способ изготовления, но она быстрее при создании сложных форм и конфигураций, чем традиционные методы».

Константин Иванов, соучредитель и генеральный директор 3DPrintus.ru, рассказал мне, как технология позволяет предлагать новые виды продуктов и услуг:

«3D-печать предоставляет решения, которые находятся на пересечении производства и цифровых технологий интернета. Наши клиенты открыли для себя лёгкий способ создания и производства практически всего. Я уверен, что главное преимущество для них — это возможность использовать простой интерфейс, чтобы получить свой продукт».

Гэри Миллер, управляющий директор сервиса услуг печати 3D Print Bureau в Великобритании, рассказал похожую историю, хотя и с осторожностью в прогнозах:

«Мы используем 3D-печать, потому что это быстрее: сокращается время выполнения заказа и доступна практически любая геометрия! Я начинал с принтера Objet более десяти лет назад, тогда был всего один материал. Прошли годы, и теперь есть около 2 тысяч материалов для печати. Только представьте, где мы будем через десять лет! Правда, сколько бы сырья у вас ни было, нужно передать его в надёжные руки. Нужен опыт в своей отрасли, чтобы понять, где эта техногия подходит, а где — только увеличит стоимость. Раньше скептически относился к тому, что 3D-печать перейдет в производство, но в первой половине 2016 года мы наблюдали прогресс и увеличение заказов. Приятно наблюдать, как развивается 3D-печать и появляются новые материалы».

Один из самых интересных разговоров состоялся с Джоном Коббом, исполнительным вице-президентом по корпоративным вопросам гиганта 3D-печати Stratasys в США. Вскоре после начала разговора, Джон сосредоточился на потенциале технологии для изменения дизайна и распространения продукции:

«В 3D-печати много внимания уделяется её адаптации к традиционным производственным процессам. Меняются основы дизайна, что позволяет изменить способ производства продуктов, а затем методы распространения. Представьте, что возникла проблема с водопроводом. Вы фотографируете это на смартфон и отправляете в Home Depot (американская торговая сеть по продаже инструментов для ремонта и стройматериалов). И уже через час или два собираете трубопровод — заменив нестандартную деталь. Возможно, на это уйдёт ешё лет пять, но мы уже движемся в этом направлении».

Миранда Бастийнс, директор бельгийской службы 3D-печати i.materialise, сосредоточила внимание на новых рыночных возможностях с другой точки зрения:

«Трёхмерная печать помогает создать мир, в котором продукты соответствуют нашим ожиданиям или индивидуальному стилю, и где у каждого есть возможность владеть чем-то уникальным. Вещи не только лучше удовлетворяют потребности и интересы потребителей, но и появляется возможность продавать собственные товары другим. Например, ювелирный дизайнер может предложить новое кольцо мировой аудитории и проверить спрос на дизайн. Если заказов нет — это больше не проблема (печать только по запросу) — а если есть, то кольца будут распечатаны, доставлены заказчику, а творец получит свою долю выручки».

Люси Бирд, основатель компании Feetz, также признает потенциал 3D-печати для создания продуктов с «лучшей посадкой». Feetz — это «цифровой сапожник», который использует 3D-принтеры для изготовления обуви по индивидуальному заказу. Как сказала мне Люси:

«Эта технология меняет способы производства и потребления вещей. Мы можем изготавливать персонализированные продукты расходуя меньше ресурсов, а переработать их будет гораздо проще».

Марк Сондерс — директор Центра Глобальных Решений (Global Solutions Centres) компании Renishaw, производящей 3D-принтеры. Он также сосредоточился на возможностях, которые технология предлагает производителям:

«Всё больше компаний стремятся использовать потенциал 3D-печати для улучшения характеристик продукции, делая её более эффективной и лучше адаптированной к применению. Уникальная возможность создавать сложные геометрические формы из высококачественных материалов открывает огромный потенциал для инноваций как в дизайне продуктов, так и в бизнес-моделях. Мы ожидаем, что аддитивное производство будет играть ключевую роль в дальнейшем развитии процессов и улучшении продуктов».

Наконец, Сильвен Премонт — основатель магазинов 3D-принтеров iMakr и сайта My Mini Factory, посвящённого 3D-контенту, — отметил, как технология раскрепощает воображение:

«Доступность трёхмерной печати даст волю творчеству: мы сможем изобретать, проектировать и изготавливать практически всё — в кратчайшие сроки и по невысокой цене. Также появится возможность загружать контент, готовый к печати и легко адаптируемый к собственным потребностям. Следующее поколение будет спрашивать своих родителей: а как вы раньше обходились без 3D-принтера?»

Новый рубеж

Как видно из интервью, 3D-печать продолжает вызывать интерес среди её пионеров. И многие крупные производители, применяющие традиционные технологии, уже меняют направление в сторону этой технологии.

Никто не может предсказать будущее 3D-печати. Тем не менее, есть веские основания полагать, что технология окажет радикальное воздействие на многие производственные сектора. В настоящее время большинство 3D-принтеров всё ещё печатают прототипы. Но менее чем через десять лет — это изменится. Вполне возможно, что в будущем, десятки миллионов людей станут летать на самолётах с печатными компонентами, стоматологические кабинеты станут оснащать оборудованием, напечатанном на 3D-принтере, и мы будем носить обувь с печатными деталями.


Это только первая глава из книги Кристофера Барнатта «3D Printing». Вот, о чём автор поведает в продолжении:

«В оставшихся главах книги я намерен исследовать мир 3D-печати, основываясь на конкретных примерах, информацию о поставщиках, исследованиях, отчетах компаний, интервью и других источниках. Также выскажу собственные взгляды и мнение. Но главное — предоставлю читателю достаточно информации, чтобы решить, является ли 3D-печать следующей промышленной революцией».

Книгу можно приобрести как в цифровом, так и печатном варианте через сайт автора.

Также, на его ютуб-канале есть записи с выставок TCT Show 2017-2019 годов, на которых представляют последние разработки в 3D-печати.

Что такое 3D-печать? Как работает 3D-принтер? Изучите 3D-печать

3D-печать или аддитивное производство — это процесс создания трехмерных твердых объектов из цифрового файла.

Создание объекта 3D-печати осуществляется с помощью аддитивных процессов. В аддитивном процессе объект создается путем наложения последовательных слоев материала до тех пор, пока объект не будет создан. Каждый из этих слоев можно рассматривать как тонко срезанное поперечное сечение объекта.

3D-печать — это противоположность субтрактивного производства, при котором вырезают / выдалбливают кусок металла или пластика, например, на фрезерном станке.

3D-печать позволяет создавать сложные формы с использованием меньшего количества материала, чем традиционные методы производства.

Как работает 3D-печать?

Все начинается с 3D модели. Вы можете создать его с нуля или загрузить из 3D-библиотеки.

Программное обеспечение 3D

Доступно множество различных программных инструментов. От промышленного уровня до открытого исходного кода. Мы создали обзор на нашей странице программного обеспечения для 3D.

Мы часто рекомендуем новичкам начать с Tinkercad.Tinkercad бесплатен и работает в вашем браузере, вам не нужно устанавливать его на свой компьютер. Tinkercad предлагает уроки для начинающих и имеет встроенную функцию для экспорта вашей модели в виде файла для печати, например .STL или .OBJ.

Теперь, когда у вас есть файл для печати, следующий шаг — подготовить его для вашего 3D-принтера. Это называется нарезкой.

Нарезка: от файла для печати к 3D-принтеру

Нарезка в основном означает разбиение 3D-модели на сотни или тысячи слоев и выполняется с помощью программного обеспечения для нарезки.

Когда ваш файл нарезан, он готов для вашего 3D-принтера. Загрузку файла на принтер можно выполнить через USB, SD или Wi-Fi. Теперь ваш нарезанный файл готов к 3D-печати слой за слоем.

Промышленность 3D-печати

Внедрение 3D-печати достигло критической массы, поскольку те, кому еще предстоит интегрировать аддитивное производство в свою цепочку поставок, теперь составляют часть постоянно сокращающегося меньшинства. Если на ранних этапах 3D-печать подходила только для создания прототипов и разового производства, то сейчас она быстро превращается в производственную технологию.

Большая часть текущего спроса на 3D-печать носит промышленный характер. Acumen Research and Consulting прогнозирует, что к 2026 году мировой рынок 3D-печати достигнет 41 миллиарда долларов.

По мере своего развития технология 3D-печати призвана преобразовать практически все основные отрасли и изменить наш образ жизни, работы и развлечений в будущем.

Примеры 3D-печати

3D-печать включает в себя множество форм технологий и материалов, поскольку 3D-печать используется практически во всех отраслях, о которых вы только можете подумать.Важно рассматривать его как кластер различных отраслей с множеством различных приложений.

Несколько примеров:

  • — товары народного потребления (очки, обувь, дизайн, мебель)
  • — продукция промышленного назначения (инструменты для производства, прототипы, функциональные конечные детали)
  • — Стоматологические изделия
  • — протезирование
  • — архитектурные макеты и макеты
  • — реконструкция окаменелостей
  • — копирование древних артефактов
  • — реконструкция улик в судебной патологии
  • — реквизит для фильмов

Быстрое прототипирование и быстрое производство

Компании использовали 3D-принтеры в процессе проектирования для создания прототипов с конца семидесятых годов.Использование 3D-принтеров для этих целей называется быстрым прототипированием.

Зачем использовать 3D-принтеры для быстрого прототипирования?
Короче: это быстро и относительно дешево. От идеи до 3D-модели и до прототипа в руках — вопрос дней, а не недель. Итерации проще и дешевле производить, и вам не нужны дорогие формы или инструменты.

Помимо быстрого прототипирования, 3D-печать также используется для быстрого производства. Быстрое производство — это новый метод производства, при котором предприятия используют 3D-принтеры для мелкосерийного производства по индивидуальному заказу.

Связанная история

3D-печать как производственная технология

Автомобильная промышленность

Производители автомобилей уже давно используют 3D-печать. Автомобильные компании печатают запасные части, инструменты, приспособления и приспособления, а также детали конечного использования. 3D-печать позволила производить продукцию по требованию, что привело к снижению уровня запасов и сокращению циклов проектирования и производства.

Автомобильные энтузиасты во всем мире используют детали, напечатанные на 3D-принтере, для восстановления старых автомобилей.Один из таких примеров — когда австралийские инженеры напечатали детали, чтобы вернуть к жизни Delage Type-C. При этом им приходилось печатать детали, которые не производились десятилетиями.

Связанная история

Как 3D-печать меняет автомобильное производство

Авиация

Авиационная промышленность использует 3D-печать по-разному. Следующий пример знаменует собой важную веху в производстве 3D-печати: GE Aviation напечатала на 3D-принтере 30 000 кобальто-хромовых топливных форсунок для своих авиационных двигателей LEAP.Они достигли этого рубежа в октябре 2018 года, и, учитывая, что они производят 600 в неделю на сорока 3D-принтерах, это, вероятно, намного выше, чем сейчас.

Около двадцати отдельных деталей, которые ранее приходилось сваривать, были объединены в один компонент, напечатанный на 3D-принтере, который весит на 25% меньше и в пять раз прочнее. Двигатель LEAP является самым продаваемым двигателем в аэрокосмической промышленности из-за его высокого уровня эффективности, и GE экономит 3 миллиона долларов на самолет за счет 3D-печати топливных форсунок, поэтому эта единственная 3D-печатная деталь приносит сотни миллионов долларов финансовой выгоды.


Топливные форсунки

GE также попали в Boeing 787 Dreamliner, но это не единственная деталь, напечатанная на 3D-принтере в 787. Конструктивные элементы длиной 33 сантиметра, которые крепят кормовой кухонный гарнитур к планеру, напечатаны на 3D-принтере компанией под названием Norsk Titanium. Компания Norsk решила специализироваться на титане, поскольку он имеет очень высокое соотношение прочности и веса и является довольно дорогостоящим, а это означает, что сокращение отходов благодаря 3D-печати имеет более значительные финансовые последствия, чем по сравнению с более дешевыми металлами, где затраты на отходы материалов равны легче впитывается.Вместо того, чтобы спекать металлический порошок с помощью лазера, как в большинстве металлических 3D-принтеров, Norsk Merke 4 использует плазменную дугу для плавления металлической проволоки в процессе, называемом Rapid Plasma Deposition (форма направленного энергетического осаждения), который может наносить до 10 кг титана. в час. Для изготовления 2-килограммовой титановой детали обычно требуется 30-килограммовый блок титана, что дает 28 кг отходов, но для 3D-печати той же детали требуется всего 6 кг титановой проволоки.

Связанная история

Первый критически важный для полета аэрокосмический компонент получил сертификат FAA

Строительство

Можно ли распечатать здание? — Да, это.3D-печатные дома уже доступны в продаже. Некоторые компании печатают сборные детали, а другие делают это на месте.

Связанная история

Новый гибридный процесс сочетает литье бетона с 3D-печатью

Потребительские товары

Когда мы впервые начали вести блог о 3D-печати в 2011 году, 3D-печать не была готова к использованию в качестве метода производства для больших объемов. В настоящее время существует множество примеров потребительских товаров, предназначенных для конечного использования на 3D-принтере.

Обувь

Линия 4D Adidas имеет полностью напечатанную на 3D-принтере межподошву и печатается в больших объемах.В 2018 году они напечатали 100000 подошв, а в 2019 году планируют напечатать еще больше.

Связанная история

Adidas представляет Futurecraft 4D — первую в мире межподошву с 3D-печатью серийного производства

Прогнозируется, что к 2029 году общий объем рынка обуви с 3D-печатью достигнет 5,9 млрд долларов.

Связанная история

Прогнозируемый объем рынка обуви с 3D-принтом к 2029 году достигнет 5,9 млрд долларов

Очки

Прогнозируется, что рынок очков, напечатанных на 3D-принтере, достигнет 3 долларов.4 миллиарда к 2028 году. Быстро увеличивающийся раздел — это рамы для конечного использования. 3D-печать является особенно подходящим методом производства оправ для очков, потому что измерения человека легко обрабатываются в конечном продукте.

Связанная история

Fitz Frames 3D-печать детских очков с помощью приложения

Но знаете ли вы, что линзы можно также печатать на 3D-принтере? Традиционные стеклянные линзы не кажутся тонкими и легкими; они вырезаны из гораздо более крупного куска материала, называемого заготовкой, около 80% которого идет в отходы.Если учесть, сколько людей носят очки и как часто им нужно приобретать новую пару, 80% этих цифр — пустая трата времени. Вдобавок к этому лаборатории должны хранить огромные запасы заготовок, чтобы удовлетворить индивидуальные потребности своих клиентов. Наконец, однако, технология 3D-печати достаточно продвинулась, чтобы предоставлять высококачественные индивидуальные офтальмологические линзы, избавляясь от прошлых затрат на отходы и складские запасы. В 3D-принтере Luxexcel VisionEngine используется акрилатный мономер, отверждаемый ультрафиолетом, для печати двух пар линз в час, которые не требуют какой-либо полировки или постобработки.Фокусные области также могут быть полностью настроены, так что определенная область линзы может обеспечивать лучшую четкость на расстоянии, а другая область линзы обеспечивает лучшее видение вблизи.

Ювелирные изделия

Есть два способа изготовления украшений на 3D-принтере. Вы можете использовать прямой или косвенный производственный процесс. Прямое относится к созданию объекта прямо из 3D-дизайна, в то время как непрямое производство означает, что объект (шаблон), который напечатан в 3D-режиме, в конечном итоге используется для создания формы для литья по выплавляемым моделям.

Связанная история

Аддитивное производство драгоценных металлов — PMAM

Здравоохранение

В наши дни нередко можно увидеть заголовки об имплантатах, напечатанных на 3D-принтере. Часто эти случаи носят экспериментальный характер, из-за чего может показаться, что 3D-печать по-прежнему является второстепенной технологией в медицине и здравоохранении, но это уже не так. За последнее десятилетие GE Additive напечатала на 3D-принтере более 100000 замен тазобедренного сустава.

Чашка Delta-TT, разработанная Dr.Guido Grappiolo и LimaCorporate изготовлены из трабекулярного титана, который характеризуется правильной трехмерной гексагональной структурой ячеек, имитирующей морфологию трабекулярной кости. Трабекулярная структура увеличивает биосовместимость титана, стимулируя рост кости в имплант. Некоторые из первых имплантатов Delta-TT все еще работают более десяти лет спустя.

Еще один компонент здравоохранения, напечатанный на 3D-принтере, который делает все возможное, чтобы быть необнаружимым, — это слуховой аппарат.Почти каждый слуховой аппарат за последние 17 лет был напечатан на 3D-принтере благодаря сотрудничеству между Materialise и Phonak. Компания Phonak разработала Rapid Shell Modeling (RSM) в 2001 году. До RSM для создания одного слухового аппарата требовалось девять трудоемких шагов, включая лепку вручную и изготовление форм, и результаты часто не подходили. В RSM техник использует силикон для снятия слепка ушного канала, этот слепок сканируется в 3D, и после некоторых незначительных изменений модель печатается в 3D на 3D-принтере из смолы.Электроника добавляется и отправляется пользователю. С помощью этого процесса каждый год печатаются на 3D-принтере сотни тысяч слуховых аппаратов.

Стоматологическая

В стоматологической промышленности мы видим, что формы для прозрачных элайнеров, возможно, являются самыми трехмерными печатными объектами в мире. В настоящее время пресс-формы печатаются на 3D-принтере с использованием процессов 3D-печати на основе смолы и порошка, а также методом струйной печати. Коронки и зубные протезы уже напрямую напечатаны на 3D-принтере вместе с хирургическими шаблонами.

Связанная история

3 способа 3D-печати революционизируют цифровую стоматологию

Биопечать

В начале двухтысячного периода технология 3D-печати изучалась биотехнологическими фирмами и академическими кругами для возможного использования в тканевой инженерии, где органы и части тела строятся с использованием струйных технологий.Слои живых клеток наносятся на гелевую среду и медленно наращиваются, образуя трехмерные структуры. Мы называем эту область исследований термином: биопечать.

Связанная история

Сердце, напечатанное на 3D-принтере, знаменует собой прорыв в биопечати

Еда

Аддитивное производство давно вторглось в пищевую промышленность. Такие рестораны, как Food Ink и Melisse, используют это как уникальный торговый аргумент для привлечения клиентов со всего мира.

Образование

Педагоги и студенты уже давно используют 3D-принтеры в классе.3D-печать позволяет студентам быстро и доступно воплощать свои идеи в жизнь.

Несмотря на то, что дипломы, связанные с аддитивным производством, довольно новы, университеты уже давно используют 3D-принтеры в других дисциплинах. Есть много образовательных курсов, которые можно пройти, чтобы заняться 3D-печатью. Университеты предлагают курсы по смежным с 3D-печатью предметам, таким как САПР и 3D-дизайн, которые могут быть применены к 3D-печати на определенном этапе.

Что касается прототипов, многие университетские программы обращаются к принтерам.Есть специализации в аддитивном производстве, которые можно получить благодаря ученой степени в области архитектуры или промышленного дизайна. Печатные прототипы также очень распространены в искусстве, анимации и модных исследованиях.

Связанная история

3D-печать в образовании

Типы технологий и процессов 3D-печати

Американское общество испытаний и материалов (ASTM) разработало набор стандартов, которые классифицируют процессы аддитивного производства по 7 категориям.Это:

  1. НДС Фотополимеризация
    1. Стереолитография (SLA)
    2. Цифровая обработка света (DLP)
    3. Непрерывное производство раздела жидкостей (CLIP)
  2. Струйная очистка материала
  3. Распыление связующего
  4. Экструзия материалов
    1. Моделирование наплавленного осаждения (FDM)
    2. Производство плавленых волокон (FFF)
  5. Порошковая кровать Fusion
    1. Многоструйная сварка (MJF)
    2. Селективное лазерное спекание (SLS)
    3. Прямое лазерное спекание металла (DMLS)
  6. Ламинирование листа
  7. Направленное распределение энергии

НДС Фотополимеризация

3D-принтер, основанный на методе фотополимеризации чана, имеет контейнер, заполненный фотополимерной смолой.Смола затвердевает под воздействием УФ-излучения.

Схема фотополимеризации чана. Источник изображения: lboro.ac.uk

Стереолитография (SLA)

SLA

был изобретен в 1986 году Чарльзом Халлом, который в то же время основал компанию 3D Systems. В стереолитографии используется емкость с жидкой отверждаемой фотополимерной смолой и ультрафиолетовый лазер для создания слоев объекта по одному. Для каждого слоя лазерный луч отслеживает поперечное сечение узора детали на поверхности жидкой смолы.Воздействие ультрафиолетового лазерного излучения отверждает и укрепляет рисунок, нанесенный на смолу, и сплавляет его с нижележащим слоем.

После того, как рисунок был нанесен, платформа лифта SLA спускается на расстояние, равное толщине одного слоя, обычно от 0,05 до 0,15 мм (от 0,002 до 0,006 дюйма). Затем лезвие, наполненное смолой, проходит по поперечному сечению детали, повторно покрывая его свежим материалом. На этой новой поверхности жидкости прослеживается рисунок последующего слоя, соединяющий предыдущий слой.В зависимости от ориентации объекта и печати SLA часто требует использования вспомогательных структур.

Цифровая обработка света (DLP)

DLP или цифровая обработка света относится к методу печати, в котором используются свет и светочувствительные полимеры. Хотя он очень похож на SLA, ключевым отличием является источник света. DLP использует другие источники света, например дуговые лампы. DLP относительно быстр по сравнению с другими технологиями 3D-печати.

Непрерывное производство раздела жидкостей (CLIP)

Один из самых быстрых процессов с использованием фотополимеризации в ванне называется CLIP, сокращение от Continuous Liquid Interface Production, разработанный Carbon.

Цифровой синтез света

В основе процесса CLIP лежит технология цифрового синтеза света. В этой технологии свет от специализированного высокопроизводительного светодиодного светового механизма проецирует последовательность УФ-изображений, обнажающих поперечное сечение 3D-печатной детали, в результате чего УФ-отверждаемая смола частично отверждается точно контролируемым образом. Кислород проходит через проницаемое для кислорода окно, создавая тонкую жидкую поверхность раздела неотвержденной смолы между окном и печатной частью, известную как мертвая зона.Мертвая зона составляет всего десять микрон. Внутри мертвой зоны кислород не позволяет свету отверждать смолу, расположенную ближе всего к окну, тем самым обеспечивая непрерывный поток жидкости под печатной частью. Прямо над мертвой зоной направленный вверх ультрафиолетовый свет вызывает каскадное отверждение детали.

Простая печать с использованием одного только оборудования Carbon не позволяет использовать свойства конечного продукта в реальных приложениях. После того, как свет сформировал деталь, второй программируемый процесс отверждения позволяет достичь желаемых механических свойств путем запекания детали, напечатанной на 3D-принтере, в термальной ванне или духовке.Программируемое термическое отверждение устанавливает механические свойства, вызывая вторичную химическую реакцию, заставляющую материал укрепляться, достигая желаемых конечных свойств.

Компоненты, напечатанные с использованием технологии Carbon, соответствуют деталям, изготовленным методом литья под давлением. Цифровой синтез света обеспечивает постоянные и предсказуемые механические свойства, создавая действительно изотропные детали.

Струйная обработка материалов

В этом процессе материал наносится каплями через сопло малого диаметра, аналогично тому, как работает обычный струйный бумажный принтер, но он наносится слой за слоем на платформу для сборки, а затем затвердевает под воздействием ультрафиолетового излучения.

Схема струйной печати материалов. Источник изображения: custompartnet.com

Binder Jetting

При нанесении связующего используются два материала: порошковый основной материал и жидкое связующее. В камере формирования порошок распределяется равными слоями, а связующее наносится через форсунки, которые «склеивают» частицы порошка в требуемой форме. После завершения печати оставшийся порошок счищается, и его можно повторно использовать для печати следующего объекта. Эта технология была впервые разработана в Массачусетском технологическом институте в 1993 году.

Схема Binder Jetting

Экструзия материалов

Моделирование наплавления (FDM)

Схема FDM (Изображение предоставлено Википедией, сделанное пользователем Zureks)

FDM работает с использованием пластиковой нити, которая разматывается с катушки и подается на экструзионное сопло, которое может включать и выключать поток. Сопло нагревается для плавления материала и может перемещаться как в горизонтальном, так и в вертикальном направлении с помощью механизма с числовым программным управлением. Изделие изготавливается путем экструзии расплавленного материала с образованием слоев, поскольку материал затвердевает сразу после экструзии из сопла.

FDM был изобретен Скоттом Крампом в конце 80-х. После патентования этой технологии в 1988 году он основал компанию Stratasys. Термин Fused Deposition Modeling и его аббревиатура FDM являются зарегистрированными торговыми марками Stratasys Inc.

.

Производство плавленых волокон (FFF)

Точно эквивалентный термин, Fused Filament Fabrication (FFF), был придуман участниками проекта RepRap, чтобы дать фразу, использование которой не ограничивалось бы законом.

Порошковая кровать Fusion

Селективное лазерное спекание (SLS)

SLS использует лазер высокой мощности для сплавления мелких частиц порошка в массу, которая имеет желаемую трехмерную форму.Лазер избирательно плавит порошок, сначала сканируя поперечные сечения (или слои) на поверхности порошкового слоя. После сканирования каждого поперечного сечения слой порошка опускается на один слой. Затем поверх наносится новый слой материала и процесс повторяется до тех пор, пока объект не будет готов.

Схема SLS (Изображение предоставлено Википедией от пользователя Materialgeeza)

Multi Jet Fusion (MJF)

Технология

Multi Jet Fusion была разработана Hewlett Packard и работает с подметающим рычагом, который наносит слой порошка, а затем с другим рычагом, оснащенным струйными форсунками, который выборочно наносит связующее на материал.Кроме того, струйные принтеры наносят детализирующий агент вокруг связующего для обеспечения точных размеров и гладкости поверхностей. Наконец, слой подвергается выбросу тепловой энергии, которая вызывает реакцию агентов.

Прямое лазерное спекание металла (DMLS)

DMLS в основном такой же, как SLS, но вместо него используется металлический порошок. Неиспользованный порошок остается, как это и становится опорной конструкцией для объекта. Неиспользованный порошок можно повторно использовать для следующего отпечатка.

Из-за повышенной мощности лазера DMLS превратился в процесс лазерного плавления.Подробнее об этой и других технологиях обработки металлов читайте на нашей странице обзора технологий обработки металлов.

Связанная история

3D-печать на металле: обзор наиболее распространенных типов

Ламинирование листа

При ламинировании листов используется материал в листах, который скрепляется внешней силой. Листы могут быть металлическими, бумажными или полимерными. Металлические листы свариваются друг с другом послойно ультразвуковой сваркой, а затем на станке с ЧПУ фрезеровались до нужной формы. Можно также использовать листы бумаги, но они склеиваются клеевым клеем и вырезаются по форме точными лезвиями.

Упрощенная схема ультразвукового процесса обработки листового металла (Изображение предоставлено Википедией от пользователя Mmrjf3)

Направленное нанесение энергии

Этот процесс в основном используется в металлургической промышленности и в системах быстрого производства. Устройство для 3D-печати обычно прикрепляется к многоосной роботизированной руке и состоит из сопла, которое наносит металлический порошок или проволоку на поверхность, и источника энергии (лазер, электронный луч или плазменная дуга), который плавит его, образуя твердый объект.

Направленное осаждение энергии с помощью металлического порошка и лазерного плавления (Изображение предоставлено: проект Merlin)

Материалы

В аддитивном производстве можно использовать несколько материалов: пластмассы, металлы, бетон, керамику, бумагу и некоторые пищевые продукты (например,грамм. шоколад). Материалы часто производятся из проволочного сырья, известного как нить, порошок или жидкая смола. Узнайте больше о наших избранных материалах на нашей странице материалов.

Услуги

Хотите внедрить 3D-печать в свой производственный процесс? Получите расценки на изготовление нестандартной детали или закажите образцы на нашей странице службы 3D-печати.

Основы 3D-печати: 15 шагов (с изображениями)

При проектировании для 3D-печати необходимо соблюдать несколько руководящих принципов и ограничений, как и для любого производственного процесса.Одно из наиболее важных соображений в процессе проектирования — это проектирование с учетом внешнего вида сборки. Все принтеры начинают создавать деталь с печатной платформы, поэтому важно помнить, с какой стороны печатается деталь. Хотя определение оптимальной ориентации деталей на всех принтерах немного отличается, проектирование с целью оптимизации этой ориентации минимизирует использование материала, время печати и риск сбоя печати.

Сокращение времени печати и вспомогательных материалов

Хорошо сориентируя деталь, вы можете уменьшить количество необходимого вспомогательного материала, что может минимизировать количество материалов и время печати.Материал поддержки бывает трудно удалить, и это создает шероховатую поверхность, что не лучший вариант, если вы хотите, чтобы ваша деталь выглядела как готовый продукт. Чтобы устранить влияние материала основы, детали необходимо отполировать и отшлифовать, что может повлиять на допуски вашей детали, если она соприкасается с чем-то другим.

Прочность детали

На большинстве настольных принтеров детали обычно имеют тенденцию ломаться вдоль поперечных сечений детали, параллельных рабочей пластине.Материал укладывается или отверждается слой за слоем, и слои не сливаются так хорошо, как в принтерах более высокого класса, создавая швы вдоль поперечных сечений детали. Это означает, что детали могут легко срезаться в этих плоскостях при приложении силы. Если вы знаете, как и где сила будет приложена к вашей части, сориентируйте ее так, чтобы направление силы не совпадало с плоскостями поперечного сечения.

Build Adhesion

На большинстве принтеров, в первую очередь на машинах FDM, детали, напечатанные на 3D-принтере, прилипают к рабочей пластине во время печати, и очень малая площадь контакта может привести к тому, что деталь упадет с рабочей пластины.Сторона вашей детали имеет наибольшую площадь поверхности в той же плоскости, что обычно является стороной, на которой вы хотите печатать, хотя это может измениться в зависимости от функций данного принтера.

Лучшие 3D-принтеры на 2021 год

Всего десять лет назад 3D-принтеры были громоздкими и дорогими машинами, предназначенными для заводов и крупных корпораций. Они были почти неизвестны за пределами небольшого круга профессионалов, которые их создавали и использовали. Но во многом благодаря движению за 3D-печать с открытым исходным кодом RepRap эти удивительные устройства стали жизнеспособными и доступными продуктами для использования дизайнерами, инженерами, любителями, школами и даже любопытными потребителями.

Если вам нужен такой принтер, важно знать, чем 3D-принтеры отличаются друг от друга, чтобы вы могли выбрать правильную модель. Они бывают разных стилей и могут быть оптимизированы для определенной аудитории или типа печати. Готовитесь сделать решительный шаг? Вот что нужно учитывать.


Что вы хотите напечатать?

В связи с тем, что вы хотите напечатать, стоит более фундаментальный вопрос: почему вы хотите печатать в 3D? Вы потребитель, заинтересованный в печати игрушек и / или предметов домашнего обихода? Законодатель моды, который любит показывать друзьям новейшие гаджеты? Педагог хочет установить 3D-принтер в классе, библиотеке или общественном центре? Любитель или домашний мастер, который любит экспериментировать с новыми проектами и технологиями? Дизайнер, инженер или архитектор, которому нужно создавать прототипы или модели новых продуктов, деталей или конструкций? Художник, который стремится исследовать творческий потенциал создания 3D-объектов? Или производитель, желающий печатать пластмассовые изделия относительно небольшими тиражами?

Ваш оптимальный 3D-принтер зависит от того, как вы планируете его использовать.Потребители и учебные заведения захотят, чтобы модель была простой в установке и использовании, не требовала особого обслуживания и имела достаточно хорошее качество печати. Любителям и художникам могут потребоваться специальные функции, такие как возможность печатать объекты более чем одним цветом или использовать несколько типов волокон. Дизайнерам и другим профессионалам потребуется превосходное качество печати. Магазины, занимающиеся мелкосерийным производством, захотят, чтобы большая площадь сборки позволяла печатать сразу несколько объектов. Частным лицам или компаниям, желающим продемонстрировать чудеса 3D-печати друзьям или клиентам, понадобится красивый, но надежный аппарат.

Лучшие предложения 3D-принтеров на этой неделе *

* Сделки отбирает наш партнер TechBargains

В этом руководстве мы сосредоточимся на 3D-принтерах стоимостью менее 4000 долларов, ориентированных на потребителей, любителей, школы, дизайнеров продукции и других специалистов, таких как инженеры и архитекторы. Подавляющее большинство принтеров в этом диапазоне создают 3D-объекты из последовательных слоев расплавленного пластика, метод, известный как производство плавленых волокон (FFF). Его также часто называют моделированием наплавленного осаждения (FDM), хотя этот термин зарегистрирован под торговой маркой Stratasys, Inc.(Хотя они не являются строго 3D-принтерами, мы также включаем в этот обзор 3D-ручки, в которых «чернила» представляют собой расплавленный пластик, и пользователь наносит их, рисуя от руки или используя трафарет.) Некоторые 3D-принтеры используют стереолитографию — первая разрабатываемая технология 3D-печати, при которой ультрафиолетовые (УФ) лазеры рисуют рисунок на светочувствительной жидкой смоле, отверждая смолу для формирования объекта.


Объекты какого размера вы хотите распечатать?

Убедитесь, что площадь построения 3D-принтера достаточно велика для объектов, которые вы собираетесь печатать с его помощью.Область построения — это размер в трех измерениях самого большого объекта, который может быть напечатан на данном принтере (по крайней мере, теоретически — он может быть несколько меньше, например, если платформа построения не совсем выровнена). Типичные 3D-принтеры имеют площадь сборки от 6 до 9 квадратных дюймов, но они могут варьироваться от нескольких дюймов до более 2 футов со стороны, а некоторые из них действительно квадратные. В наших обзорах мы указываем площадь сборки в дюймах по высоте, ширине и глубине (HWD).


Какие материалы вы хотите использовать для печати?

Большинство недорогих 3D-принтеров используют технику FFF, при которой пластиковая нить, доступная в катушках, плавится и экструдируется, а затем затвердевает, образуя объект.Двумя наиболее распространенными типами волокон являются акрилонитрилбутадиенстирол (ABS) и полимолочная кислота (PLA). У каждого есть немного разные свойства. Например, ABS плавится при более высокой температуре, чем PLA, и является более гибким, но при плавлении он выделяет пары, которые многие пользователи считают неприятными, и для него требуется подогреваемая платформа для печати. Отпечатки из PLA выглядят гладкими, но имеют тенденцию быть хрупкими.

Другие материалы, используемые в FFF-печати, включают, помимо прочего, ударопрочный полистирол (HIPS), древесные, бронзовые и медные композитные нити, УФ-люминесцентные нити, нейлон, полиэстер тритан, поливиниловый спирт (ПВА), полиэтилен. терефталат (PETT), поликарбонат, токопроводящий PLA и ABS, термопластичный эластомер пластифицированного сополиамида (PCTPE) и PC-ABS.Каждый материал имеет разную температуру плавления, поэтому использование этих экзотических нитей ограничено принтерами, предназначенными для них, или теми, у которых есть программное обеспечение, которое позволяет пользователям контролировать температуру экструдера.

Нить накала бывает двух диаметров — 1,85 мм и 3 мм — в большинстве моделей используется нить меньшего диаметра. Нить продается в бобинах, обычно 1 кг (2,2 фунта), и продается по цене от 20 до 50 долларов за килограмм для ABS и PLA. Хотя многие 3D-принтеры поддерживают стандартные катушки, в 3D-принтерах некоторых компаний используются патентованные катушки или картриджи.Они часто содержат чип RFID, который позволяет принтеру определять тип и свойства нити, но это работает только для совместимых принтеров этого производителя. Убедитесь, что диаметр нити соответствует вашему принтеру, а катушка — правильного размера. Во многих случаях вы можете купить или изготовить (даже напечатать на 3D-принтере) держатель катушки, который будет соответствовать разным размерам катушек. (Чтобы узнать больше о филаментах для 3D-печати, ознакомьтесь с нашим объяснением по филаментам.)

Стереолитографические принтеры могут печатать с высоким разрешением и отказаться от филаментов в пользу светочувствительной (УФ-отверждаемой) жидкой смолы, которая продается в бутылках.Доступна только ограниченная цветовая палитра: в основном прозрачный, белый, серый, черный или золотой. Работа с жидкой смолой и изопропиловым спиртом, который используется в процессе отделки стереолитографических отпечатков, может быть грязной и неприятной.


Какое разрешение вам нужно?

3D-принтер экструдирует последовательные тонкие слои расплавленного пластика в соответствии с инструкциями, закодированными в файле для печатаемого объекта. Для 3D-печати разрешение равно высоте слоя. Разрешение измеряется в микронах, микрон равен 0.001мм, и чем меньше число, тем выше разрешение. Это потому, что чем тоньше каждый слой, тем больше слоев необходимо для печати любого данного объекта и тем мельче детали, которые могут быть захвачены. Однако обратите внимание, что увеличение разрешения похоже на увеличение числа мегапикселей цифровой камеры: хотя более высокое разрешение часто помогает, оно не гарантирует хорошего качества печати.

Почти все продаваемые сегодня 3D-принтеры могут печатать с разрешением 200 микрон, что должно давать отпечатки приличного качества, или лучше, а многие могут печатать с разрешением 100 микрон, что обычно обеспечивает хорошее качество печати.Некоторые из них могут печатать с более высоким разрешением, вплоть до 20 микрон, но вам, возможно, придется выйти за пределы предустановленных разрешений и перейти к пользовательским настройкам, чтобы обеспечить разрешение менее 100 микрон.

Более высокое разрешение имеет свою цену, поскольку вы обычно будете платить больше за принтеры с разрешением выше 100 микрон. Еще одним недостатком увеличения разрешения является то, что это может увеличить время печати. Уменьшение разрешения вдвое примерно удвоит время, необходимое для печати данного объекта. Но для профессионалов, которым требуется высочайшее качество печатаемых объектов, дополнительное время может того стоить.

Сфера 3D-печати для потребителей и любителей все еще находится в зачаточном состоянии. Технология развивается быстрыми темпами, делая эти продукты еще более жизнеспособными и доступными. Нам не терпится увидеть, какие улучшения принесут ближайшие годы.


Хотите печатать в нескольких цветах?

Некоторые 3D-принтеры с несколькими экструдерами могут печатать объекты в двух или более цветах. Большинство из них представляют собой модели с двумя экструдерами, в каждый из которых подается нить разного цвета.Одно предостережение заключается в том, что они могут печатать разноцветные объекты только из файлов, которые были разработаны для многоцветной печати, с отдельным файлом для каждого цвета, поэтому области разных цветов подходят друг к другу, как (трехмерные) части головоломки.


На какой поверхности лучше строить?

Важность платформы сборки (поверхности, на которой вы печатаете) может не быть очевидной для новичков в 3D-печати, но на практике она может оказаться критической. Хорошая платформа позволит объекту прилипать к ней во время печати, но она должна обеспечивать возможность легкого удаления после завершения печати.Самая распространенная конфигурация — это обогреваемая стеклянная площадка, покрытая синей малярной лентой или аналогичной поверхностью. Предметы достаточно хорошо приклеиваются к ленте, и их легко удалить после завершения. Нагревание платформы может предотвратить скручивание нижних углов объектов вверх, что является распространенной проблемой, особенно при печати с использованием АБС.

На некоторых строительных платформах вы наносите клей (из клеевого стержня) на поверхность, чтобы дать объекту что-то, на что можно приклеиться. Это работоспособно, если объект можно легко удалить после печати.(В некоторых случаях вам нужно замочить платформу и объект в теплой воде, чтобы объект высвободился.)

В некоторых 3D-принтерах используется лист перфорированного картона с крошечными отверстиями, которые заполняются горячим пластиком во время печати. Проблема с этим методом заключается в том, что, хотя он будет надежно удерживать объект на месте во время печати, впоследствии объект не может легко отсоединиться. Использование кнопки или шила для выталкивания заглушек из затвердевшего пластика из перфорационных отверстий, чтобы освободить объект и / или очистить плату, является трудоемким процессом и может повредить плату.

Если платформа сборки наклоняется, это может затруднить печать, особенно больших объектов. Многие 3D-принтеры предлагают инструкции о том, как выровнять строительную платформу, или предоставляют процедуру калибровки, в которой экструдер перемещается в разные точки на платформе, чтобы гарантировать, что все точки находятся на одной высоте. Растущее число 3D-принтеров автоматически выравнивает платформу сборки.

Установка экструдера на нужную высоту над платформой сборки при запуске задания печати также важна для многих принтеров.Такая «калибровка оси Z» обычно выполняется вручную, путем опускания экструдера до тех пор, пока он не окажется настолько близко к платформе сборки, что лист бумаги, помещенный между экструдером и платформой, может двигаться горизонтально с небольшим сопротивлением. Некоторые принтеры автоматически выполняют эту калибровку.


Нужна ли вам закрытая рама?

Закрытые 3D-принтеры имеют закрытую конструкцию с дверцей, стенками и крышкой или колпаком. Модели с открытой рамой обеспечивают удобный обзор выполняемых заданий печати и легкий доступ к печатной платформе и экструдеру.Модель с закрытой рамой более безопасна, так как дети и домашние животные (а также взрослые) не могут случайно прикоснуться к горячему экструдеру. Это также означает более тихую работу, уменьшение шума вентилятора и возможного запаха, особенно при печати с использованием АБС-пластика, который может источать запах горелого пластика.


Как вы хотите подключиться к принтеру?

На большинстве 3D-принтеров печать запускается с компьютера через USB-соединение. Некоторые принтеры добавляют свою внутреннюю память, что является преимуществом, поскольку они могут сохранять задание печати в памяти и продолжать печать, даже если кабель USB отключен или компьютер выключен.Некоторые из них предлагают беспроводную связь через 802.11 Wi-Fi или прямую одноранговую связь. Обратной стороной беспроводной связи является то, что, поскольку файлы для 3D-печати могут иметь размер до 10 МБ, их передача может занять гораздо больше времени. Еще один метод подключения, который мы видели, — это Ethernet для совместного использования принтера в локальной сети.

Многие 3D-принтеры имеют слоты для карт SD (или microSD), из которых вы можете загружать и распечатывать файлы 3D-объектов с помощью элементов управления и дисплея принтера, в то время как другие имеют порты для USB-накопителей.Преимущество печати напрямую с носителя в том, что вам не нужен компьютер. Обратной стороной является то, что они добавляют дополнительный шаг при переносе файлов на вашу карту. Как правило, в дополнение к базовому USB-кабелю предлагается беспроводное подключение, подключение к SD-карте или USB-накопителю, хотя некоторые модели предлагают один или несколько из этих вариантов.


Какое программное обеспечение вам нужно?

Современные 3D-принтеры поставляются с набором программного обеспечения на диске или в виде загружаемого ПО. Он совместим с Windows и во многих случаях может работать с macOS и Linux.Не так давно программное обеспечение для 3D-печати состояло из нескольких частей, включая программу печати, которая управляла движением экструдера, программу «исцеления» для оптимизации файла для печати, слайсер для подготовки слоев к печати с надлежащим разрешением. и язык программирования Python.

Эти компоненты были заимствованы из традиции открытого исходного кода RepRap, которая стимулировала разработку недорогих 3D-принтеров. Сегодня производители 3D-принтеров интегрировали эти программы в цельные, удобные для пользователя пакеты, многие из которых построены на платформе с открытым исходным кодом Cura для поддержки своих принтеров.Некоторые 3D-принтеры также позволяют использовать отдельные программные компоненты, если вы предпочитаете.


Итак, какой 3D-принтер мне купить?

Ниже представлены лучшие 3D-принтеры, которые мы недавно рассмотрели. Они охватывают широкий диапазон цен, функций и методов печати, но все они представляют качество. Для получения дополнительной информации о том, что такое 3D-печать и как она работает, обратитесь к нашему учебнику по 3D-печати. И обязательно ознакомьтесь с нашим обзором лучших универсальных принтеров.

Что такое 3D-печать? Как это работает?

3D-печать предоставила несколько полезных решений для строительства, медицины, пищевой и авиакосмической промышленности.

Примеры 3D-печати


3D-печать пронизала почти каждый сектор и предложила некоторые инновационные решения проблем во всем мире. Вот несколько интересных примеров того, как 3D-печать меняет будущее:

3D-печатные дома

Некоммерческие организации и города по всему миру обращаются к 3D-печати, чтобы решить глобальный кризис бездомных. New Story, некоммерческая организация, занимающаяся улучшением жилищных условий, прямо сейчас печатает дома.Используя принтер длиной 33 фута, New Story может создать дом площадью 500 квадратных футов со стенами, окнами и двумя спальнями всего за 24 часа. На данный момент New Story создала мини-кварталы с 3D-печатью в Мексике, Гаити, Сальвадоре и Боливии, причем более 2000 домов напечатаны на 100%.

Хотите попробовать 3D-печатную еду? Посмотрите, как наши любимые блюда теперь могут быть доставлены прямо из принтера.

Еда, напечатанная на 3D-принтере

Еда, напечатанная на 3D-принтере, кажется чем-то необычным или слишком хорошим, чтобы быть правдой.На самом деле, если его можно протереть, его можно смело печатать. Как что-то из научно-фантастического шоу, 3D-принтеры накладывают на настоящие протертые ингредиенты, такие как курица и морковь, чтобы воссоздать продукты, которые мы знаем и любим. Еда, напечатанная на 3D-принтере, полностью безопасна для употребления, если принтер полностью очищен и работает должным образом. Однако вы можете заказать еду заранее. 3D-принтеры для еды по-прежнему относительно медленны. Например, для печати детализированного кусочка шоколада требуется около 15-20 минут. Тем не менее, мы видели, как принтеры изготавливают все, от гамбургеров до пиццы и даже пряничных домиков, используя эту умопомрачительную технологию.

3D-печать органов и протезов конечностей

В ближайшем будущем мы увидим, как 3D-принтеры будут создавать рабочие органы для тех, кто ждет трансплантации. Вместо традиционного процесса донорства органов врачи и инженеры объединяются для разработки новой волны медицинских технологий, которые могут создавать сердца, почки и печень с нуля. В этом процессе органы сначала моделируются в 3D с использованием точных характеристик тела реципиента, а затем слой за слоем распечатывается комбинация живых клеток и полимерного геля (более известного как биочернила), чтобы создать живой человеческий орган.Эта революционная технология способна изменить известную нам медицинскую отрасль и сократить чрезвычайно большое количество пациентов в списке ожидания донорства органов в США.

3D-печать также стала благом для области протезирования. Вместо того, чтобы тратить сотни тысяч долларов на новую руку, руку или ногу с использованием традиционных методов протезирования, 3D-принтеры могут обеспечить аналогичный внешний вид всего за 50 долларов. По общему признанию, эти печатные протезы не так высокого качества, как профессиональные протезы, но они являются отличной заменой для детей, которые более склонны ломать свои протезы и вырастать из них.

Аэрокосмическая технология с 3D-печатью

Будет ли будущее космических путешествий зависеть от ракет с 3D-печатью? Так думают такие компании, как Relativity Space в Калифорнии. Компания утверждает, что она может напечатать рабочую ракету на 3D-принтере всего за несколько дней и из 100 раз меньшего количества деталей, чем у обычного шаттла. Первая концептуальная ракета компании, Terran 1, должна быть запущена в 2020 году, и от начала печати до запуска в космос пройдет всего 60 дней. Ракета будет напечатана на заказ с использованием запатентованного сплава металла, который максимизирует грузоподъемность и минимизирует время сборки.Общая грузоподъемность этой ракеты достигает 1750 кг (примерно вес среднего носорога). Неплохо для того, что вышло из принтера.

3ders.org — Основы 3D-печати | Руководство для начинающих

Содержание:

  1. Что такое 3D-печать?
  2. Технологии 3D-печати
  3. История 3D-печати
  4. Приложения для 3D-печати
  5. Что такое 3D-принтер?
  6. В чем разница между машиной для быстрого прототипирования и 3D-принтером?
  7. Что можно сделать с помощью 3D-принтера?
  8. Кто производит 3D-принтеры?
  9. Сколько стоит 3D принтер?
  10. Как построить 3D-принтер?
  11. Какие материалы используются для печати 3D-объектов?
  12. Какая программа для 3D-моделирования подходит новичку в 3D-дизайне?
  13. У меня нет опыта 3D-дизайна. Сколько времени нужно, чтобы научиться 3D-моделированию?
  14. Где я могу получить 3D-модели в Интернете?
  15. Где я могу найти онлайн-сервис 3D-печати?

_________________________________________________________________________________________

1.Что такое 3D-печать?

3D-печать также известна как изготовление настольных ПК или аддитивное производство. Это процесс прототипирования, при котором реальный объект создается из трехмерного дизайна. Цифровая 3D-модель сохраняется в формате STL и затем отправляется на 3D-принтер. Затем 3D-принтер распечатывает дизайн слой за слоем и формирует реальный объект. Подробнее ..

2. Технологии 3D-печати

Существует несколько различных технологий 3D-печати. Основные различия заключаются в том, как слои создаются для создания деталей.

SLS (селективное лазерное спекание), FDM (моделирование методом наплавления) и SLA (стереолитография) являются наиболее широко используемыми технологиями для 3D-печати. Селективное лазерное спекание (SLS) и моделирование наплавлением (FDM) используют расплавленные или размягченные материалы для создания слоев.

В этом видео рассказывается, как в процессе лазерного спекания мелкие порошки постепенно превращаются в трехмерные формы.

Это видео показывает, как работает FDM.

Видео ниже объясняет процесс стереолитографии (SLA).

Как правило, основными факторами являются скорость, стоимость напечатанного прототипа, стоимость 3D-принтера, выбор и стоимость материалов и цветовых возможностей.

3. История 3D-печати

5 октября 2011 г. — Корпорация Roland DG представила новую модель iModela iM-01.

Сентябрь 2011 г. — Венский технологический университет разработал более компактное, легкое и дешевое печатающее устройство.

Этот самый маленький 3D-принтер весит 1.5 килограммов, это стоит около 1200 евро.

, август 2011 г. — Первый в мире самолет, напечатанный на 3D-принтере, созданный инженерами Саутгемптонского университета.

Читать далее..

4. Приложения для 3D-печати

Одно из самых важных приложений 3D-печати — это медицинская промышленность. С помощью 3D-печати хирурги могут создавать 3D-печатные модели частей или органов пациентов для конкретных пациентов. Они могут использовать эти модели для планирования и проведения операций, потенциально спасая жизни.

3D-печать позволяет изготавливать деталь с нуля за считанные часы. Это позволяет дизайнерам и разработчикам перейти от плоского экрана к точной физической части.

В настоящее время почти все, от аэрокосмических компонентов до игрушек, создается с помощью 3D-принтеров. 3D-печать также используется для изготовления ювелирных изделий и искусства, архитектуры, дизайна одежды, искусства, архитектуры и дизайна интерьера.

Вот несколько необычных примеров 3D-печати:

  • Первый в мире автомобиль, напечатанный на 3D-принтере

  • Первый в мире шоколадный 3D-принтер

  • Первое в мире бикини с 3D-печатью

5.Что такое 3D-принтер?

3D-принтер отличается от стандартного струйного 2D-принтера. На 3D-принтере объект печатается в трех измерениях. 3D-модель строится слой за слоем. Поэтому весь процесс называется быстрым прототипированием или 3D-печатью. Подробнее ..

Разрешение современных принтеров составляет примерно 328 x 328 x 606 точек на дюйм (xyz) при 656 x 656 x 800 точек на дюйм (xyz) в разрешении Ultra-HD. Точность 0,025–0,05 мм на дюйм. Размер модели до 737 мм х 1257 мм х 1504 мм.

Самым большим недостатком для домашнего пользователя остается высокая стоимость 3D-принтера. Еще одним недостатком является то, что на печать 3D-модели уходит часы или даже дни (в зависимости от сложности и разрешения модели). Помимо вышеперечисленного, профессиональное программное обеспечение для 3D-моделирования и проектирование 3D-моделей также имеют высокую стоимость.

В качестве альтернативы уже существуют упрощенные 3D-принтеры для любителей, которые намного дешевле. И материалы, которые он использует, также дешевле. Эти 3D-принтеры для домашнего использования не так точны, как коммерческие 3D-принтеры.

6. В чем разница между базовой машиной для быстрого прототипирования и 3D-принтером?

3D-принтеры

— это простая версия машин для быстрого прототипирования. Это меньше потерь и меньше возможностей.

Быстрое прототипирование — это традиционный метод, который уже много лет используется в автомобильной и авиационной промышленности.

В целом 3D-принтеры компактнее и меньше машин RP. Они идеально подходят для использования в офисах. Они потребляют меньше энергии и занимают меньше места. Они предназначены для воспроизведения в небольшом объеме реальных объектов из нейлона или другого пластика.Это также означает, что 3D-принтеры делают детали меньшего размера. Машины для быстрого прототипирования имеют камеры сборки не менее 10 дюймов со стороны, у 3D-принтера — менее 8 дюймов со стороны. Однако 3D-принтер способен выполнять все функции машины для быстрого прототипирования, такие как проверка и проверка дизайна, создание прототипа, удаленный обмен информацией и т. Д.

Следовательно, 3D-принтеры просты в обращении и дешевы в обслуживании. Вы можете купить один из этих наборов DIY на рынке и собрать его самостоятельно. Это дешевле, чем профессиональное быстрое прототипирование, за 1000 долларов или меньше вы можете получить один 3D-принтер.В то время как профессиональное быстрое прототипирование стоило не менее 50 тысяч долларов.

3D-принтеры менее точны, чем машины для быстрого прототипирования. Из-за своей простоты выбор материалов также ограничен.

7. Что можно сделать с помощью 3D-принтера?

В области 3D-печати люди говорят: «Если ты умеешь это нарисовать, ты сможешь это сделать». На видео ниже показано, что многие предметы можно сделать с помощью 3D-принтера. Какими бы сложными объектами ни занимались только профессиональные 3D-принтеры, они пока недоступны обычному семейству.

8. Кто производит 3D-принтеры?

Производители промышленных 3D-принтеров:

Производителей домашних 3D-принтеров:

9. Сколько стоит 3D принтер?

Вот список сравнения цен DIY 3D-принтеров и список сравнения цен полностью собранных или коммерческих 3D-принтеров (менее 25000 долларов США).

10. Как построить 3D-принтер?

Мозаичный 3D-принтер MakerGear

Часть I: Рама

Часть II: Ось Y

Часть III: Ось X

Часть IV: Ось Z

Часть V: Экструдер

Часть VI: Платформа сборки

Часть VII: Электроника

Reprap

Как построить 3D-принтер Reprap — RepRapOneDarwin (1-е поколение)

Как построить 3D-принтер Reprap — Huxley (mini-reprap, портативный)

Как построить 3D-принтер Reprap — Mendel (RepRap Version II)

Как построить 3D-принтер Reprap — Prusa (простая сборка)

Подробнее…

11. Какие материалы используются для печати 3D-объектов?

Для 3D-печати можно использовать множество различных материалов, таких как АБС-пластик, PLA, полиамид (нейлон), стеклонаполненный полиамид, материалы для стереолитографии (эпоксидные смолы), серебро, титан, сталь, воск, фотополимеры и поликарбонат.

12. Какое программное обеспечение для 3D-моделирования подходит новичку в 3D-дизайне?

Если вы только начинаете, вы можете попробовать некоторые из программ для 3D-моделирования, которые можно загрузить бесплатно.

  • Google SketchUp — Этот Google SketchUp забавен, бесплатен и известен своей простотой в использовании. Чтобы построить модели в SketchUp, вы рисуете края и грани с помощью нескольких простых инструментов, которым вы научитесь за короткое время. С помощью инструмента Push / Pull вы можете выдавить любую плоскую поверхность в трехмерную форму. Кроме того, он работает вместе с Google Планета Земля, так что вы можете импортировать масштабированный аэрофотоснимок прямо из Google Планета Земля или использовать SketchUp для создания моделей, которые можно увидеть в Google Планета Земля.
  • 3Dtin — Самая простая программа для 3D.Вы можете рисовать прямо из браузера.
  • Blender — Blender — это бесплатный пакет для создания 3D-контента с открытым исходным кодом, доступный для всех основных операционных систем под Стандартной общественной лицензией GNU. Blender был разработан как внутреннее приложение голландской анимационной студией NeoGeo и Not a Number Technologies (NaN). Это мощная программа, содержащая функции, характерные для высококачественного программного обеспечения для работы с 3D.
  • OpenSCAD — OpenSCAD — это программа для создания твердых 3D-объектов САПР.Это бесплатное программное обеспечение, доступное для Linux / UNIX, MS Windows и Mac OS X. В нем основное внимание уделяется не художественным аспектам трехмерного моделирования, а аспектам САПР.
  • Tinkercad — Tinkercad — это новый и более быстрый способ создания дизайнов для вашего 3D-принтера. Всего с помощью трех основных инструментов вы можете создать широкий спектр полезных вещей. Когда ваш проект будет готов, просто загрузите файл STL и начните 3D-печать.

Посмотрите другие программы в списке бесплатных программ.

Коммерческое программное обеспечение, такое как программное обеспечение САПР AutoCAD и Pro Engineer, программные пакеты Rhino, Maya и SolidWorks — все они очень хороши для проектирования 3D-моделей.

13. У меня нет опыта 3D-дизайна, сколько времени нужно, чтобы научиться 3D-моделированию?

Вы можете научиться создавать 3D-модели, научившись использовать инструменты 3D-моделирования, такие как Rhino, Blender или SketchUp. Вам понадобится несколько недель, чтобы познакомиться с такими инструментами 3D-моделирования, как SketchUp, Rhino и Blender.Чтобы стать профессиональным пользователем, вам понадобится как минимум полгода на обучение и практику.

14. Где я могу получить 3D-модели в Интернете?

Вот сайт с базой данных 3D моделей:

15. Где я могу найти онлайн-сервис 3D-печати?

Такие компании, как Shapeways, i.Materialise, Sculpteo и Ponoko, предоставляют услуги 3D-печати онлайн. Подробнее здесь: Список услуг 3D-печати

pp big man написал 6/6/2019 17:17:02:

мне очень нравится бюстгальтер с 3d принтом, заставь меня уйти ooo ahhh

greg написал 6/6/2019 17:08:56 PM:

мне нравится как 3d печать в принтере выглядит так круто

80Fik написал 20.05.2019, 4:56:00:

Полностью больной

paul написал 5.04.2019 19:22:09:

привет как дела

Человек из будущего написал 19.03.2019, 14:58:15:

Я проверю этот сайт через пару лет, 3D-печать живет!

you bum hole написал 04.02.2019 18:35:43 PM:

hola my peps wass good? Im 3D печать прямо сейчас, и это потрясающе !!!

Каунна написал (11.12.2018, 19:52:51):

ХАХА! Создание первой для меня кофейной кружки !!

тот единственный написал 28.11.2018 12:02:06 AM:

комментарии горят

Epic memer danklord написал 20.11.2018 21:34:55 PM:

меня зовут Джефф лол, хахаха, я такой смешной, потому что я сказал, что мем очень сырой 24/2018 8:38:37 AM:

Westworld реален.. мы все находимся в тематическом парке под названием Земля

Пинер написал 1 августа 2018 г., 21:44:40:

Дайте мне повод жить, пожалуйста.

dcdffd написал (26.07.2018, 6:58:53):

kaitlyn любит Льюиса !!!!

rip написал 26.07.2018 6:58:14 AM:

Kaitlyn loves KYale REEves

vevd написал 26.07.2018 6:56:21 AM:

kaitlyn любит lewis

sruba137 написал 01.07.2018 3:01:47

Nice !! Сторона:>

Горячий материал написал 23.04.2018 18:44:37:

Привет

Привет написал 17.03.2018 3:40:19 AM:

Привет

Случайный пользователь написал на 27.02.2018, 3:58:06 AM:

Leedle Leedle Leee

big plant gregsed писал в 1/6/2018 17:18:00:

wiser

POLISHUK AMNON писал 24.10.2018 2017 9:43:25 AM:

ПРИВЕТ, Я ХОЧУ ЗНАТЬ, ЕСТЬ ЛИ У ВАС ИНФОРМАЦИЯ О ЭЛЕКТРОНИКЕ ДЛЯ 3D-ПЕЧАТИ

СПАСИБО AMNON

Альберт Эйнштейн написал 19.09.2017, 22:38:53:

Lit

Я написал на 29.05.2017 2:47:02 AM:

awsome ifno like the choc 3d printer

8 === D написал 01.05.2017, 3:25:22 AM:

Dick Cheese — самый вкусный сыр

Barry Bogtrotter написал 12.04.2017 10:31:05 AM:

OKAY my мама любит травяной чай

БАНАНАМАН написал 6 марта 2017 г., 8:11:40 вечера:

Я люблю бананы на солнышке.

bobbydebobon писал (05.01.2017, 23:35:39):

НООО>.

КТО? написал в 1/5/2017 23:34:39:

фуууууу …

МАЛИАН И ГЕОРГИЙ написал 02.11.2016, 2:25:57 утра:

МАЛИЯНСКИЙ И ГЕОРГИЙ И МАЛИЙСКИЙ ГОВОРЯТ ОТЛИЧНЫЙ ИНФОРМАЦИОННЫЙ БРО

awesome написал 31.10.2016 3:19:27 AM:

horibble info

YOULL NEVER KNOW написал на 26.08.2016 19:25:44 PM:

ОЧЕНЬ красиво 🙂

OluOdun Aliu написал в 8/22/2016 16:05:05 PM:

Что нужно для создания моей мастерской по 3D-печати в Нигерии?

Салли Хиггинс написала 22.08.2016 7:56:34 AM:

привет, мне нравится эта информация, но не могли бы вы добавить информацию о влиянии, которое оказывает 3D-принтер? Благодарность!

beam написал 19.07.2016 12:46:48:

wow

Да написал 03.05.2016 10:57:54:

Шаг первый: купить принтер на деньги
* слеза скатывается по щеке «блин»

snipermania писал 19.04.2016 18:18:08:

гитлер был хорошим человеком

kkk написал 14.04.2016, 22:11:40:

негров

NIKKIE написал 14.03.2016, 8:11:36:

ЭТО ЗНАЧИТ МЕНЯ УЗНАТЬ МНОГОЕ.СПАСИБО.

Ангел Пэм написал 13 января 2016 г., 1:26:08:

Что касается 3D-принтеров для домашнего использования, мне было интересно, смогут ли те из вас, кто занимается дизайном людей, работающих в этой области, создать камеру для переработки, в которой каждый день, бытовые пластмассы, упаковка, пакеты, пластиковые бутылки и т. д. могут быть помещены в камеру для подготовки (без выделения газов) для использования в 3D-принтере. Мне не нравится то количество пластика, которое, как я вижу, уходит в мусор, и было бы здорово иметь универсальное устройство для переработки в домашних условиях, чтобы мы могли превращать наш пластик в другие предметы, которые нам нужны.Просто идея …

Гириш написал 4 января 2016 г., 10:43:59:

хорошо для тех, кто хочет понять основы 3D-печатной машины

Shrek Devotee написал 30 декабря 2015 г. 3 : 10: 43 PM:

Примите Шрека как единственного истинного спасителя в своем сердце! В противном случае вы почувствуете его гнев лука и никогда не доберетесь до его болота …

2-я поправка написана 22.12.2015, 21:15:46:

Это замечательно для изготовления журналов большой емкости. Большое спасибо вам всем за то, что вернули свободу американскому народу.

AGKISTRIWTHS написал на 17.12.2015, 4:44:35 AM:

GAMW TO XRISTO SAS

bryce написал на 11/12/2015 19:44:07 PM:

что они сделали с медицинской точки зрения

Джеймс Парк написал 11/11/2015 6:22:54 AM:

Привет, сэр,

Это Джеймс Парк из Luvantix / Fospia в Корее. Как твои дела?

Мы являемся единственным запатентованным производителем в Южной Корее различных видов смол.

Фактически, мы также начали разработку смолы для 3D-печати и, наконец, нам удалось завершить разработку смолы для 3D-печати типа SLA.Итак, я очень рад представить нашу смолу для 3D-печати.

Я прилагаю TDS и MSDS и некоторые изображения продуктов для вашей справки.

Если у вашей компании есть интерес к нашим 3D смолам, мы отправим образцы для тестирования.

Пожалуйста, дайте мне знать ваше мнение.

Я буду рад поддержать вас и вашу компанию лучшими решениями и ценами.

С нетерпением жду Вашего ответа!!

[email protected] / [email protected]
www.fospia.ком

Джеймс Парк написал 11/11/2015 6:21:58 AM:

Привет, сэр,

Это Джеймс Парк из Luvantix / Fospia в Корее. Как твои дела?

Мы являемся единственным запатентованным производителем в Южной Корее различных видов смол.

Фактически, мы также начали разработку смолы для 3D-печати и, наконец, нам удалось завершить разработку смолы для 3D-печати типа SLA.
Итак, я очень рад представить нашу смолу для 3D-печати.

Я прилагаю TDS и MSDS и некоторые изображения продуктов для вашей справки.Если у вашей компании есть интерес к нашим 3D смолам, мы отправим образцы для тестирования.

Пожалуйста, дайте мне знать ваше мнение.

Я буду рад поддержать вас и вашу компанию лучшими решениями и ценами.

С нетерпением жду Вашего ответа!!

[email protected] / [email protected]
www.fospia.com

билл-ные мем парень написал в 10/5/2015 15:23:52:

люблю этот промозглый мем

Эссам Рефаи написал в 10/4/2015 12:34:34 PM:

Это шоколад и еда 3D принтер для продажи..и сколько цена если да?
а стоимость доставки в египет?
пожалуйста, напишите мне на адрес ниже для получения более подробной информации:
[email protected]
Моб. 01000100355 (+02)

Дэвид Брюэр написал в 8/31/2015 12:21:35 AM:

Это заставляет меня все горячее и потный, как толстый ребенок смотрит конфеты порно.

CP Tan написал 14.08.2015, 11:09:21 AM:

Я ищу 3D-принтер, который может помочь мне напечатать детали, которые можно разместить в среде с температурой от 250 до 300 градусов C.У вас есть такой 3D-принтер?

Пожалуйста, напишите мне, чтобы обсудить. Моя электронная почта [email protected]
Контакты: (65) -98109522

Спасибо!

Джордж написал в 8/7/2015 10:23:02 AM:

полезный гаджет для преобразования 3D-принтера в устройство с ЧПУ
Дешевый лазерный резак / гравер Endurance L.
Можно резать и гравировать!

AKSA написал 30.07.2015, 9:27:30 AM:

ЭТО ВЕБ-САЙТ ПОМОГИТЕ МНЕ СДЕЛАТЬ МОЙ ПРОЕКТ

Aksa написал 30.07.2015 9:25:31 AM:

очень нравится этот сайт
я получил много информации только с этого сайта

Барак Обама написал 04.07.2015 15:19:18:

Молодец

Эрик Биркемайер написал 22.06.2015 23:18:55:

Меня зовут Эрик Биркемайер, я отправляю вам электронное письмо с информацией о ПЕРВЫХ фарах для скейтбордов, которые стали возможны благодаря 3D-печати в Государственном университете Сан-Диего.Наша компания называется ShredLights, и мы только вчера запустили нашу кампанию на Kickstarter (http://kck.st/1K4xFkX). Загляните на нашу страницу и убедитесь, насколько полезна для нас 3D-печать! Мы хотели бы занять популярное место на вашем сайте и показать потенциальным клиентам возможности 3D-печати в нашей повседневной жизни. Спасибо за прочтение!

лол лол лол 14.05.2015, 19:47:51 написал:

лоллоллоллоллоллоллол
ржу не могу
ржу не могу
ржу не могу
ржу не могу
ржу не могу
ржу не могу
ржу не могу
ржу не могу
ржу не могу

Кейси написал 4 мая 2015 г., 21:01:09:

Я делаю это для научного эксперимента и считаю эту информацию полезной.

Эми написала 29 апреля 2015 г., 11:18:52:

Это хорошая информация. Вы слышали о 3D-ручках CreoPop? Сейчас они принимают предварительные заказы на goo.gl/izSIHt. Как вы думаете?

Льюис написал (21.04.2015, 16:44:50):

Удобная статья. Много полезной информации. Тем не менее, нуждается в корректуре.

Джунджи написал 10.04.2015 17:33:34:

Я делаю язык 3D-моделирования для начинающих.
Это строит куб, как лего.
https://github.com/junjihashimoto/cube
Как вы думаете?
Это хорошая идея или плохая идея?

Джули написал 6 апреля 2015 г., 18:38:26:

, можете ли вы купить акции этой отрасли? Если да, то где?

Georgelolsicakes написал 25.03.2015 2:18:21 AM:

HI

Я написал 22.03.2015 17:34:05:

Lol

aidan stocum написал 16.03.2015 2015 3:53:40 PM:

спасибо

Кельман написал 16.03.2015, 12:02:01 AM:

Спасибо за создание единого сайта для информации о 3D-печати.Ваше здоровье.

Чарльз Скраггс написал 5 марта 2015 г., 21:05:48:

, почему мы изучаем это о 3D-принтерах?

Билл Най написал 03.03.2015 18:31:42:

dank

Х. Махмуди написал 28.02.2015 6:27:30 AM:

Привет, дорогие!
Я работаю в компании по производству устьевого оборудования. Упомянутое оборудование обычно имеет цилиндрическую форму с несколькими неровностями. Собираемся купить 3D-принтер. Будем признательны, если кто-либо из вас порекомендует подходящий 3D-принтер для таких приложений.

Fodil написал 13.02.2015, 19:59:19:

Я хотел бы поблагодарить вас за предоставленную нам возможность узнать больше о 3D-ПЕЧАТИ, которая поможет нам открыть для себя другие области печати.

boo написал 31.01.2015, 22:15:38:

это классная штука

кто-то написал 27.01.2015, 23:06:17:

привет

да написал 1 / 8/2015 4:59:39 AM:

% 3Cscript% 3Ealert (% 27hello% 27)% 3C% 2Fscript% 3E

klark написал в 1/8/2015 12:58:34 AM:

4riXwr http : // www.FyLitCl7Pf7kjQdDUOLQOuaxTXbj5iNG.com

The Fruit написал на 1/6/2015 5:40:20 AM:

Я банан

Кристен написала 26.12.2014 14:46:39 PM:

Очень, очень хорошо источник информации. Спасибо за то, что вы так тщательно описали. Приятно иметь людей, которые делают дополнительный шаг, чтобы помочь нуждающимся!

Ревелл Корнелл написал 20.12.2014, 23:55:18:

Спасибо, спасибо, спасибо. Наконец-то появился веб-сайт, который так просто объясняет 3D-печать.Я несколько дней искал такой сайт, но это просто показывает, что вам нужно только задать Google правильный вопрос, и появится правильный ответ. Блестящий сайт.

Wooden написал 19.12.2014 8:12:58:

Купите 3Д модель, пожалуйста. Я хочу построить дом

dfdf написал 10.12.2014 2:38:31 AM:

Я нашел веб-сайт, который я искал!

Крис написал (02.12.2014, 19:17:00):

Попробуйте это для создания дизайна 🙂 https://play.google.com/store/apps/details?id=com.tdcp.threedc

bjj написал на 23.11.2014 18:08:09:

jhjhjg

matt написал 13.11.2014 22:24:09:

где взять ошибки для modio для моего ipad

Натан написал на 11/12/2014 7:48:29 AM:

Good work

dorkmo написал на 11/4/2014 22:40:53 PM:

вы могли бы добавить youmagine в свой список

Джейми Себастьян написал 19.10.2014 17:55:27:

Привет, у меня есть идея для 3D-принтера, пожалуйста, свяжитесь со мной в Джейми[email protected]

Raymond написал 01.10.2014 16:58:54:

bob строитель может исправить что угодно

Паван написал 20.09.2014 19:27:18 PM:

Привет ,
Привет от Workbench Projects!

Мы очень молодое производственное пространство в Бангалоре, мы проводим и проводим множество семинаров и мероприятий для всех возрастных групп, чтобы представить культуру DIY и продвигать ее.
.
Недавно мы сотрудничали с Intel Education и проводим несколько демонстраций 3D-печати в сегменте K12.Мы заинтересованы в аренде пары 3D-принтеров (от 4 до 5 принтеров) для наших мероприятий. Это будет обычное упражнение.

Мы приглашаем вас написать вам, поскольку мы обнаружили, что ваша компания на нескольких форумах обсуждает возможность сдачи 3D-принтеров в аренду.

Мы живем в Бангалоре и надеемся получить эти 3D-принтеры в октябре. Если вы не отдаете 3D-принтеры в аренду, но знаете кого-то, кто мог бы это сделать, мы будем признательны, если вы приведете нас к ним. Если вы все-таки сдаете их в аренду, просьба предоставить расценки на аренду 5 принтеров на 2 дня.С нетерпением ждем от вас в ближайшее время.
С уважением,
Ану и Паван

Таннер написал (12.09.2014, 20:24:14):

Как трехмерный принтер делает для изготовления деталей игрушек?

Asswipe555 написал в 9/12/2014 18:05:22 PM:

эта страница отстой

JN написал 9/9/2014 18:30:18 PM:

Сколько деталей может сделать 3D-принтер что-то вроде чашки

подмастерье инструментальщика написал 17.08.2014 5:13:23:

спасибо, отличная работа.

Янг К. Ким написал в 8/7/2014 8:13:48 AM:

Это 3Dprintguy Corp. в Корее.
Сейчас в Корее рынок 3D-печати стремительно растет.

Если вам интересен корейский рынок,
пожалуйста, дайте нам знать.
Спасибо.

Янг Ким для 3Dprintguy Corp. в Корее

Нареш Кумар Гупта написал 12.07.2014 14:26:06:

Я Нареш Гупта из Нью-Дели, Индия. Мы ищем достойную связь, чтобы начать тренировки по 3D для масс в Индии.У нас есть сеть из 28000 пунктов обслуживания, обслуживающих около 30 миллионов человек. Мы хотели бы провести обучение на всех региональных языках Индии. Благодаря этому обучению появится огромный рынок для 3D-принтеров начального уровня. Пожалуйста, дайте нам знать, как мы можем работать вместе и на каких условиях.

Наилучшие пожелания,
Нареш Кумар Гупта
+919810162469
[email protected]

nikhil sarma написал 01.07.2014, 10:29:21 AM:

kaha milega 3d printer bhai

Debbie LeGrair написала 22.06.2014 15:04:10 PM:

Насколько велик 3D принтер? Я слышал, что производители автомобилей используют его, сможет ли принтер создать машину, на которой я действительно смогу водить? Я знаю, что это нужно будет делать по частям.Какой принтер самый дешевый и самый дорогой?

Спасибо
qnbee1116

Brittany написала 10.06.2014 8:57:00 AM:

Вау, большое спасибо. Это такая интересная тема. Прекрасная работа.

amir rafiq написал 01.06.2014 20:41:28:

пришлите мне даты выставок 3d принтеров в разных частях мира в 2014 году

Чандан написал (27.05.2014, 15:04:32):

Привет,
Как энтузиаст классических автомобилей, я хотел бы создавать 3D-модели в масштабе 1:18.Как я могу отсканировать реальную машину и получить правильную детализацию?

Пиюш (22.05.2014, 13:09:22) написал:

очень полезная информация для начинающих.

Джеймс написал (19.05.2014, 18:21:33):

хороший сайт для понимания 3D-принтеров …… Спасибо.

Мэри. К. Rolls написал 19.05.2014 17:14:16:

Уважаемые сэр или мадам
3D-принтер может помочь мне воссоздать классический Rolls-Royce Phantom V
1960 Джеймс Янг
С наилучшими пожеланиями от Мэри. К. Роллы
Mary_Rolls @ yahoo.co.uk

Каллум Кинцетт написал 19.05.2014, 11:32:46:

твой парень какашка Ага

Хамид написал 15.05.2014, 19:28:59:

Большое спасибо для полной информации, как я могу купить эту машину в Иране
?

Дэвид А. Амрайн написал 15 мая 2014 г., 6:18:02:

Замечательная информация! Спасибо за составление этого!

Патрик написал в 5/12/2014 6:01:49 AM:

Это фантастика, большое вам спасибо.

Мэри.К. Rolls написал 08.05.2014 17:54:51:

Уважаемый
Спасибо за вашу прекрасную информацию, которую я хочу знать с помощью 3D-принтера
возможно ReCreate Classic Car Rolls-Royce Phantom V Джеймс Янг
Постройте все детали из металла с помощью 3D-печати Двигатель Коробка передач Рама шасси
И сколько стоит этот проект
С наилучшими пожеланиями от Мэри. К. Роллы

braeden miner

написал (05.05.2014, 01:02:57):

Отлично !!!

ля ля непослушный мальчик написал на 29.04.2014 15:15:20:

спасибо Мне нравится этот сайт

Goopta написал 29.04.2014 6:29:42 AM:

Это чушь !

pragya nagori написал (27.04.2014, 17:57:04):

очень полезная информация…! хорошая работа.. 🙂

Амит Савла написал 23 апреля 2014 г., 13:02:00:

большое спасибо …….. 🙂

Франк написал 23 апреля 2014 г. 2:41:34 :

хорошо, я сделал 3D-модель для печати, но как мне применить размеры и размеры, правильные измерения, такие как мои собственные измерения, так что к тому времени, когда я закончу разрезать и нарезать части, которые я хочу, я могу пойти и распечатать по отдельности, а в точке сборки я могу просто соединить и надеть его, и я знаю, что он подойдет, потому что я просто ввожу свои собственные размеры и измерения.как это можно сделать?

Аммара написал 13 апреля 2014 г., 9:35:02 AM:

Приятно. Спасибо, что поделились.

Janob_Lee написал 9.04.2014, 23:50:54:

Большое спасибо!

Binu ic illicka написал 8 апреля 2014 г., 21:20:43:

Спасибо за эту прекрасную информацию :-).

Ричард написал 7 апреля 2014 г., 18:32:43:

СПАСИБО ЗА КРАСИВУЮ ИНФОРМАЦИЮ!

duck написал на 31.03.2014 12:10:28 AM:

thanx я съел пирог

Julie Reece написала 28.03.2014 16:59:44 PM:

Этот раздел должен включать SDL, выборочный технология ламинирования методом напыления.SDL был изобретен Mcor Technologies. В этой технологии в качестве строительного материала используется обычная бумага. Это самая низкая стоимость печати / эксплуатации, полноцветная и самая экологичная технология 3D-печати. В этом техническом документе это подробно объясняется. в штанах, танцуя под numa numa hhaahaaha …

Аноним написал 25.03.2014, 22:00:33:

Я так без ума от идеи 3D-принтера для моего проекта… Расскажите, пожалуйста, о критериях и шагах, чтобы изучить и поработать над этим …. пожалуйста, любой 1 направьте меня …

srinivas ch написал 19 марта 2014 г. 9:54:19 AM:

спасибо большое полезно

Нико Ван Дер Мерве написал 9 марта 2014 г., 3:59:07 AM:

Это потрясающе и потрясающе. Будущее.

3R написал 05.03.2014, 21:18:02:

Спасибо, отлично!

гуру написал 27.02.2014, 13:29:57:

Спасибо …… это было очень полезно для меня ……..

Ричард написал 26.02.2014 12:14:10 AM:

СПАСИБО ЗА КРАСИВУЮ ИНФОРМАЦИЮ!

РОСС написал 20.02.2014, 4:54:40:

ПУТЬ МНОГО ИНФОРМАЦИИ
ОТРЕЗАТЬ ТОЛЬКО НЕМНОГО
СПАСИБО

Мин Lwin написал 20.02.2014 1:31:30:

Я еще не знаю точно.Может ли принтер печатать и расплавляя, и формируя слой за слоем? Ответьте мне, пожалуйста …

Адриен написал (14.02.2014, 5:38:26):

За 3D-принтерами определенно будущее, они даже печатают целые здания !! http://nusteel.com.au/3d-printing/

monisha em написал в 2/11/2014 14:18:43 PM:

это очень информативно для моего репортажа с семинара по 3D-печати

Тим Хатченс написал 07.02.2014, 20:59:29:

Какие там затраты на материалы?

Каран написал 6 февраля 2014 г., 10:34:26:

Привет, ребята, я хочу сделать 3D-принтер.Где я могу получить комплект DIY в Индии?

ZmartPart написал 4 февраля 2014 г., 9:26:08:

В основном хорошо сделано. Мы можем связать некоторые из этих видео с нашего веб-сайта с вашими в информационных целях для наших клиентов! Наш сайт www.zmartpart.com!
С наилучшими пожеланиями,
Команда ZmartPart

Джошуа Ливингстон написал 29 января 2014 г., 8:40:18 AM:

ДЕЙСТВИТЕЛЬНО УДИВИТЕЛЬНО …………. ТОЧНАЯ ИНФОРМАЦИЯ.
СПАСИБО.

Эджолин Энрикес написал 22 января 2014 г., 7:38:00 AM:

Это отличный способ представить 3D-технологию многим.Как и здесь, в ОАЭ, не все хорошо знакомы с такими замечательными технологиями. Поэтому наша компания Abaad прилагает бесчисленные усилия, чтобы достичь и поделиться тем, что может принести 3D-потенциал. Спасибо, что поделились этим.

Тим Скиллман написал 20.01.2014 1:40:13 AM:

Извините, но мы печатали шоколадом в нашей компании AspexSoftware по крайней мере 5 лет назад! — см. www.aspexsoftware.com/fab_at_school.htm

Тим написал 20.01.2014 1:38:34 AM:

Извините, но мы печатали шоколадом в нашей компании AspexSoftware по крайней мере 5 лет назад! — см. www.aspexsoftware.com/fab_at_school.htm

FH написал 15.01.2014 6:52:35 AM:

ОЧЕНЬ … ОЧЕНЬ … ОЧЕНЬ … ХОРОШАЯ И ЯЗНАЧНАЯ ИНФОРМАЦИЯ
ОБ ОСНОВАХ 3D-ПЕЧАТИ.
КАК УПРАВЛЯТЬ ПОТОКОМ ЧЕРНИЛ (или жидкости) из пистолета / картриджа?
СПАСИБО ЗА ВСЕ.

Динеш Упадхьяй написал 06.01.2014 13:53:30:

Привет, ребята!
Я новичок в этом форуме, однако я инженер и PG в CAD / CAM.
Расположен в Мумбаи. В настоящее время работаю в ювелирной компании и широко использую CAD и Cam.раньше использовали разные типы машин для быстрого прототипирования, но никогда не использовали домашние принтеры типа PLA / ABS.

Динеш Упадхьяй написал 06.01.2014 13:49:30:

Привет, Рагурам Прабхакаран!
Лучшие специалисты в Мумбаи для создания прототипов мастерской — Imaginurim, в MIDC Andheri.
Я знаю их, и у меня есть отличные люди, у которых можно учиться и работать.

Джеймс Канг написал 25.12.2013 21:24:38:

모든 정보 를 주신 분들 에게

감사 한 마음 을 전 합니다.

tom написал 23.12.2013 4:51:10 AM:

Новый сайт http: // 3dstuffzone.com

Кевин написал 17.12.2013, 18:06:22 PM:

Soap

Майк Монкриф написал 03.12.2013 11:52:16 AM:

Где я могу научиться делать 3D-печать ? Я живу в городе Сент-Пол, штат Миннесота.

urniga написал 28.11.2013 12:27:10:

вы можете показать концептуальную карту 3д печати? : P

vybil написал 22.11.2013 15:33:22 PM:

ftrfrdtrfyjf

Johnnt boy написал 20.11.2013 16:52:47:

Zebras

Adam написал 11 / 20/2013 4:46:06 AM:

Привет, большинство материалов для 3D-печати — это ABS и PLA.Есть ли причина, по которой полипропилен не используется для 3D-печати?

YYYY написал 11.11.2013, 19:33:30 PM:

WHAT SI GRPWTH ЭТОЙ ОТРАСЛИ НА ИНДИЙСКОМ РЫНКЕ

jz написал на 01.11.2013 1:35:29 AM:

this was очень полезно для исследовательской работы, которую я делал

C Cooper написал 27.10.2013 4:59:23 AM:

Держитесь подальше от всего, что предлагает микшоп … Я купил смесь g1 еще в марте, и кроме того печатая кубик или два, ничто не оставалось вместе достаточно долго, чтобы напечатать то, что я хотел в рамках проекта, над которым я работал.Вдобавок проклятый экструдер был напечатан из PLA! Как только температура станины экструдера становится выше 50 градусов, эта проклятая штука начинает таять. Не заставляйте меня начинать и с платформой экструдера … Похоже, что-то, что придумал школьник (держатели подшипников на платформе вышли из строя примерно после трех отпечатков … Вас предупредили.

dodood написал на 10/25 / 2013 17:02:59:

Это лучшее, что есть в репе ева

Фарханг Каримзаде. Написал 22.10.2013 18:48:48:

Для кого это может касаться:

Я пишу это электронное письмо, чтобы найти университет для изучения моделирования и прототипирования.Я изучаю промышленный дизайн со степенью бакалавра, и мне очень интересно изучать моделирование и прототипирование в связи с промышленным дизайном, но не в качестве краткосрочного семестра или просто части другой области знаний.
Ищу университет, в котором по окончании я смогу получить степень бакалавра или даже выше.

Во время поиска в Интернете я обнаружил несколько сигналов, которые могу задать вам, поэтому я засыпаю вас множеством запросов и вопросов.

Большое спасибо за вашу поддержку, сотрудничество и вклад.Будем очень признательны за подтверждение получения этого письма.

С нетерпением жду Вашего ответа.

[email protected]

MPL написал 18.10.2013, 19:44:38:

Спасибо за это красивое и краткое введение.

Манас написал 04.10.2013 6:37:22:

Благодарю за предварительную информацию.

kari написал в 10/4/2013 12:35:37 AM:

Итак, мой муж занимается 3D-дизайном и пытается сделать модель для вырезания символа.Говорят, край должен напоминать формочку для печенья, но пока ничего из того, что он сделал, не работает. Он использует sketchup, я думаю, может ли кто-нибудь дать мне совет передать ему?

Панчо Нопалес написал 27.09.2013, 6:25:37 AM:

Gracias por la informacion fue de gran utilidad!

Дживел написал (26.09.2013, 17:16:18):

Привет,
Я использую shapeways.com и очень доволен сервисом!
Это мой последний проект

https://www.shapeways.com/model/1337943/jumping-frog-wire-32-mm-1-25-inches.html? li = результаты магазина & materialId = 6

До свидания!

Чад написал 25.09.2013 22:58:04:

Не могли бы вы добавить оборудование для 3D-принтера

Джимми написал 19.09.2013 20:55:43:

олухи

Я написал в 9/12/2013 18:42:11:

wat r teh materials tu bild 1

Jeremie Pate написал 10.09.2013 14:38:11 PM:

Это довольно круто. Спасибо за информацию

Рагурам Прабхакаран написал 21.08.2013 11:39:51:

Я действительно хочу работать над услугами трехмерной печати.Я ищу возможность поработать в 3D типографии в Индии, особенно в Мумбаи, чтобы получить основательные практические знания.
В настоящее время я работаю 2 D / 3 D аниматором, специализируюсь на текстурировании и освещении. Не могли бы вы сообщить мне какие-либо известные 3D-принтеры, доступные в Мумбаи, Индия? Или же
Если я захочу начать, какова будет стоимость?

Скотт написал (12.08.2013, 15:51:32):

Превосходное понимание 3D-печати поддерживает качество журналистики.

Ллевеллин Кинг написал 10.08.2013 1:34:49 AM:

Мне интересно изучить потенциальное влияние 3D-печати на общество в целом и особенно на нервные отрасли, которые могут не знать, что им это нужно — еще.Ллевеллин Кинг

Бруно написал на 8/4/2013 6:30:56 AM:

Спасибо, что поделился!
Кто-нибудь знает, какие марки и модели принтеров показаны в видео о стереолитографических принтерах (SLA)?

tks

Аарон написал 30.07.2013 23:33:13:

Это отличная информация для тех, кто знакомится с 3D-печатью и где найти нужные ресурсы.

Недавно я открыл веб-сайт, на котором мы предоставляем услуги 3D-графического дизайна для тех, кто хочет заняться 3D-печатью, не имея каких-либо специальных знаний о процессе 3D-моделирования.В рамках нашего запуска мы задавались вопросом, можем ли мы организовать размещение нашего веб-сайта в качестве одного из ресурсов, упомянутых на этой странице. Веб-сайт — Triaxisart.com. Пожалуйста, проверьте это и дайте мне знать, что нужно для этого.

Продолжайте в том же духе с этой страницей!
Со мной можно связаться по адресу [email protected]

Айбуке написал 24.07.2013, 15:54:53:

Спасибо за огромную поддержку, которую вы оказываете! Целый день искал подходящий материал и комплект для принтера; однако я не дошел ни до какого пункта, пока не наткнулся на ваш сайт.

Г. Родригес написал в 7/11/2013 4:31:29 AM:

Какие 3d принтеры принимают проекты AutoCad … ???

Кен Каммингс написал 10.07.2013, 4:02:16 AM:

Как горный инженер я научился нитрифицировать целлюлозу (крахмал / сахарный полимер), чтобы сделать базовое низкосортное взрывчатое вещество, известное как пушечный хлопок. Я только что узнал, что ПВА, используемый для печати растворимых подложек для выступов от печати, также может быть нитрифицирован для создания соединения, склонного к быстрому разложению. Не объясните ли какой-нибудь химик-полимер, как нитрифицировать ПВА ровно настолько, чтобы он быстро ушел, не оторвав мне руки?

Раджиб написал 09.07.2013 10:42:48:

Где заказать? Пожалуйста, предоставьте информацию о продажах.Мы хотели бы сотрудничать с вами для развития нашего бизнеса с помощью 3D Gigabot
mailto [email protected]

Ezu написал 4.07.2013, 20:06:10 PM:

Технология все еще находится в начальной фазе с большими ожиданиями в будущем. 3D-принтеры уже доступны на рынке, но список объектов, которые можно построить с их помощью, все еще очень невелик.

RobotDigg написал 14.06.2013 8:06:16:

Хорошее знание

Bonitum написал 23.05.2013 10:50:11:

Замечательная рецензия.Спасибо команде 3Ders!

Карлос написал (22.05.2013, 23:56:02):

Mucho Cool!

coolkid написал 13.05.2013, 9:38:26 AM:

: 0

Мэгги Л. написала 12.05.2013, 21:31:17:

действительно крутая информация.

surendranath написал 12.05.2013 5:19:27 AM:

Привет, сэр
Большое спасибо за хорошее объяснение о 3D-принтере

[email protected] написал 7 мая 2013 г., 5:16:37 AM:

Отличная статья, хорошо написанная и очень информативная.Я могу создать 3D-модель на своем компьютере, и я подумывал о том, чтобы некоторые из моих 3D-моделей, такие как статуи, любовники, были превращены в настоящие 3D-модели из внешнего доступного источника. Вы видите статую, Мыслитель, я бы хотел создать любовные статуи высотой около 24 дюймов. Я все еще думаю об этом.

21leftcenter написал (30.04.2013, 21:45:13):

МОЙ МУЖ ЛЮБИТ ВАШ САЙТ! 🙂

bob написал 17.04.2013, 2:05:53:

отличная информация, мне действительно нужно купить, спасибо

uli написал 10.04.2013, 22:07:33:

какая-нибудь онлайн-школа 3D-дизайна и печати?

~ LB написал 10.04.2013, 19:01:11:

You Rock!

Руби написала 21.03.2013 12:44:04:

Как я могу заказать у вас прототипы

Сара К.написал 15.03.2013 17:27:34:

Отличная, ясная информация! Спасибо

Аня написала 25.02.2013 в 18:07:15:

Спасибо, Дэвид.

Дэвид Снелл написал 25.02.2013 17:32:42:

# 8 нуждается в небольшой корректировке из-за консолидации в промышленном пространстве:
Objet объединился со Stratasys
Z Corp. объединилась с 3D Systems

Чираг Патил написал (20.02.2013, 13:07:24):

Отличное место для поиска информации!

sayli dethe написал 14.02.2013 6:29:14 AM:

его невероятно

Jimmy написал 11.02.2013 10:17:40 AM:

Спасибо! Это невероятная технология.Я нашел несколько интересных статей о 3D-печати здесь: www.about3dprinters.com/3d-printing-news.html

Крис Моррис написал 10.02.2013, 19:33:11 PM:

Отличный сайт и очень полная информация .
Спасибо.

Джексон написал (02.02.2013, 14:50:53):

Durham3d — тоже отличный сервис. Я получил от них качественный отпечаток по невероятно низкой цене. @ Durham3d, [email protected]

Р. Уикли написал 22 января 2013 г., 21:49:14:

Сканирование идет рука об руку с 3D-печатью.Точка защемления — сканирование. Как получить программную модель, которую можно преобразовать в деталь.

Есть много средств сканирования. Самый простой — сканирование фотографий: создание серии фотографий под разными углами и их объединение в виртуальную модель. К счастью, помощь есть.

Мой 3D-сканер бесплатный. http://www.my3dscanner.com/
PhotoModeler стоит 2500 долларов http://www.photomodeler.com/
… и все, что находится между http://www.scannerkiller.com/welcome.html

Это означает, что единственное действительно необходимое вам специальное оборудование — это
камера.

Dienye A. Atemie написал 22.01.2013 6:35:51 AM:

Мы следили за захватывающими разработками 3D-принтеров и теперь хотим сделать более целенаправленный шаг в инвестировании в этот удивительный продукт, производство добавок. Будем признательны, если вы предоставите нам все контактные данные производителей 3D-принтеров. Мы намерены сотрудничать с ними для создания огромных рынков за пределами США. В особых случаях мы могли бы согласиться на то, чтобы мы были их преданным представителем даже за пределами США.Спасибо, и мы с нетерпением ждем вашего ответа.

Mitch Bupp написал 15.01.2013 17:12:50:

Спасибо, это будущее промышленного производства. Надеюсь, что я не опоздаю, чтобы попасть на первый этаж техники.

Спасибо, Энн Мари, я проверю. Я пытаюсь выяснить, где лучше всего получить образование по этому поводу.

Siwek написал 11.01.2013, 14:02:02:

Я никогда не видел обсуждения текстуры ПОВЕРХНОСТИ, параметров или пост-обработки.Что такое обработка поверхности и как она влияет на точность?

d написал (а) 09.12.2012, 13:29:05:

Замечательная рецензия. Спасибо команде 3Ders!

Кевин написал 20.11.2012, 9:57:59 AM:

Revolvon предлагает услугу 3D-печати по очень конкурентоспособным ценам. Просто отправьте stl-файл через веб-сайт и получите ответ в течение нескольких часов. Стандартная доставка готовых деталей — 2-3 дня. Для технических обсуждений звоните и спрашивайте продажи.
www.revolvon.ком

Карла Эренрайх написала 15 сентября 2012 г., 8:18:22 PM:

Спасибо за то, что собрали эту информацию воедино таким образом.

mirza aslam написал 28.08.2012 3:18:28 AM:

Thax bro

Леон написал 16.08.2012, 11:00:50:

Отличный сайт. Спасибо, что сделали 3D-печать такой доступной.

Dcell_1t написал 13.08.2012, 20:23:43:

спасибо, это поможет мне в моем проекте !!!

Аня написала (19.04.2012, 23:37:56):

Cube объявлен первым домашним 3D-принтером.Но ни у кого его еще нет, поэтому и обзора нет. Все существующие 3D-принтеры наверняка непросты для новичков.

Ди. B написал (а) 19.04.2012, 20:17:30:

Кто сейчас делает самый простой 3D-принтер для домашнего использования? Есть ли он у HP на рынке? Спасибо за ответ.

Энн Мари Шиллито написала 18.02.2012, 12:50:04:

Пожалуйста, добавьте Cloud9, пакет 3D-моделирования http://anarkik3d.co.uk/, который очень быстро и легко изучить и получить быть креативным — немного как карандаш: легко использовать сразу с простором для умелого мастерства с практикой.Его легко научиться использовать, потому что он использует тактильное (виртуальное трёхмерное касание) устройство, которое заменяет стандартную мышь, обеспечивая трёхмерное движение и усиливая обратную связь для осязания, используя наши естественные способы взаимодействия в реальном мире!

Ричард написал 16.02.2012, 19:49:58:

СПАСИБО ЗА КРАСИВУЮ ИНФОРМАЦИЮ!

3D-печать | Услуги 3D печати

Найдите место для 3D-печати

Индивидуальные решения для удовлетворения уникальных потребностей вашего бизнеса.Пусть ваши идеи воплотятся в жизнь с помощью 3D-печати.

Распечатать функциональные прототипы

Вы можете использовать 3D-печать для изготовления прототипов или уникальных изделий. Пусть UPS Store® воплотит ваши идеи в жизнь. Мы даже можем использовать ваш файл 3D CAD.

Конструктивные приспособления и приспособления для производства

Мы понимаем, что когда вы занимаетесь собственным производством, приспособления и приспособления имеют решающее значение для обеспечения высокого качества и эффективности во время сборки и тестирования. Наш 3D-принтер может создавать сложные детали, поэтому вы не зависите от станка с ЧПУ.

Создание аксессуаров на заказ

Хотите создать свой собственный чехол для смартфона или зажим для денег? Большинство предметов, которые меньше хлебницы и могут быть изготовлены из пластика одного цвета, идеально подходят для 3D-печати.

Строить архитектурные модели

Вы можете работать практически в любой программе трехмерного архитектурного проектирования, а затем экспортировать файлы в распространенные типы файлов трехмерного САПР. Готовый продукт готов к демонстрации, или вы можете отшлифовать и покрасить здание, чтобы придать ему нужный вид.

Услуги 3D-печати расширены по всей стране

UPS Store продолжает расширять услуги 3D-печати по всей стране, чтобы удовлетворить растущие потребности своих клиентов из малого бизнеса. 3D-печать теперь доступна примерно в 20 магазинах UPS. Воспользуйтесь интерактивной картой ниже, чтобы найти ближайший к вам филиал, или просмотрите полный список всех магазинов UPS Store, предлагающих услуги 3D-печати.

Услуги 3D CAD и 3D сканирования

Пункты 3D-печати UPS Store теперь также могут предлагать вам услуги 3D CAD и 3D-сканирование через HoneyPoint3D.Получение индивидуальной 3D-печати никогда не было таким простым — вы мечтаете, HoneyPoint3D создает ее, а UPS Store распечатывает. Воспользуйтесь преимуществами HoneyPoint3D, такими как простой процесс цитирования, доступное и качественное проектирование, онлайн-просмотр ваших 3D-файлов и эффективное время обработки. Получите 3D-САПР или сканирование сегодня!

Netfabb® в магазине UPS Store®

Участвует В пунктах 3D-печати UPS Store используется программное обеспечение Netfabb для подготовки и настройки файлов для 3D-печати.Услуги, доступные в этих местах, включают:

  • Крепление файла
  • Текстовая маркировка
  • Маркировка логотипа
  • Резка

Свяжитесь или посетите эти офисы Netfabb, чтобы узнать больше об их продвинутых 3D-предложениях.

Как улучшить 3D-печать

Одним из основных препятствий для внедрения 3D-печати на многих рынках была изменчивость ее результатов — с точки зрения точности размеров и свойств материала, таких как пористость, прочность, температура и химическая стойкость.Но индустрия аддитивного производства начинает полномасштабную атаку на эту проблему. Он состоит из трех частей: оборудования, программного обеспечения и систем управления.

Поскольку технологии 3D-печати все больше становятся основой современных производственных операций, производители оригинального оборудования (OEM), компании-разработчики программного обеспечения, фабрики 3D-печати и контрактные производители стремятся повысить эффективность и воспроизводимость этих методов производства.Вариативность 3D-печати продуктов была главной заботой руководства на протяжении десятилетий. Инженеры-технологи и менеджеры уделяют особое внимание однородности продукта в отношении точности размеров и свойств материала, таких как пористость, прочность, температура и химическая стойкость.

Текущий уровень согласованности в 3D-печати — также известный как «аддитивное производство» — достаточен для многих продуктов. Они включают формы, игрушки, стоматологические устройства, оптические линзы, очки, печатные платы (PCB), некоторые антенны и датчики, а также ненесущие металлические и пластмассовые запасные части для локомотивов, тяжелого промышленного оборудования, самолетов и военного оборудования.

Insight Center

Однако это все еще относительно небольшая часть потенциального рынка, на котором можно было бы применить данную производственную технологию, если бы можно было повысить стабильность ее выпуска. Понимая это, индустрия аддитивного производства начинает полномасштабную атаку на эту проблему. Нападение — это трехсторонняя попытка с использованием оборудования, программного обеспечения и систем управления для уменьшения изменчивости печатаемых объектов.

Оборудование. Трудно улучшить качество 3D-печати без учета аппаратного обеспечения самих принтеров (например,g., двигатели, печатающие головки, лазеры), а также аппаратные устройства, такие как датчики температуры, датчики влажности и рентгеновские камеры, для контроля качества и выявления ошибок слой за слоем в процессе печати. Velo3D, калифорнийский производитель принтеров, является одним из примеров компании, машины которой могут контролировать металлические детали в процессе печати. Благодаря использованию датчиков его принтеры могут быть дополнены системой, которая отслеживает такие вещи, как уровень кислорода, влажность и уровни неиспользованного порошка. Такой уровень видимости и контроля позволяет им достигать более высоких выходов и большей повторяемости для многих типов продуктов без необходимости постобработки (доработки продукта после того, как он вышел из 3D-принтера).

Попытки улучшить процесс печати могут также включать традиционные (субтрактивные) производственные инструменты, которые используются для улучшения однородности слой за слоем. Машины 3DEO, другого калифорнийского производителя принтеров, оснащены датчиками, позволяющими использовать данные в реальном времени о точности размеров и параметрах процесса для оптимизации печати. Основываясь на этих данных, станки 3DEO используют режущий инструмент (микро-концевую фрезу), который подрезает кромки и внутренние элементы, такие как решетки и отверстия, для достижения требуемых допусков и желаемой геометрии.Подрезка производится послойно.

Программное обеспечение и данные. Искусственный интеллект и машинное обучение также играют важную роль в стремлении сделать продукты 3D-печати более согласованными. Они используются для оптимизации конфигурации материалов, конструктивных особенностей, настроек принтера, процессов печати и условий окружающей среды для изготовления продукта. Эти технологии могут создавать производственные циклы обратной связи, которые автоматически устраняют дефекты по мере печати и могут значительно уменьшить несогласованность результатов печати между принтерами и с течением времени.

Например, PrintSyst, новая израильская компания-разработчик программного обеспечения, разработала искусственный интеллект, который синтезирует результаты тысяч заданий на печать. Он ищет факторы, которые могут помочь в достижении более высокой согласованности, доходности, экономии затрат и любых аспектов качества, которые могут быть приоритетными для клиентов. Затем программное обеспечение предлагает технологии печати, выбор материалов, параметры машины и даже модификации конструкции для достижения целей, выбранных для оптимизации.

Устаревшее программное обеспечение для ориентации и укладки деталей в камеру сборки было усовершенствовано и теперь содержит алгоритмы, которые выполняют сотни или тысячи вычислений за считанные секунды для достижения идеального способа создания определенной геометрии на указанном принтере.Такие решения предлагают такие мировые гиганты программного обеспечения для 3D-печати, как Materialise (Бельгия), Siemens (Германия) и Autodesk (США). Базирующаяся в Пенсильвании компания-разработчик программного обеспечения ANSYS предоставляет инструменты для проектирования аддитивных производств и моделирование процессов для металлических деталей, что позволяет заказчикам получать продукцию «с первого раза».

Новые платформы аддитивного производства — например, 3DPrinterOS, созданная калифорнийской компанией 3D Control Systems — теперь способны управлять согласованностью для тысяч принтеров, распределенных по всему миру.Такие платформы могут удаленно управлять несколькими 3D-принтерами и назначать задания в зависимости от доступности и возможностей машин. Во многих ситуациях 3D Control Systems устанавливает собственное программное обеспечение на самих принтерах, что позволяет платформе управлять принтерами. Этот элемент управления используется для повышения согласованности путем предотвращения или исправления типичных ошибок или ошибок, включая использование неподходящих файлов для печати, неровные рабочие пластины и неправильный выбор сопел для желаемого вывода.

Системы менеджмента. В этом подходе используются проверенные временем методы управления для повышения согласованности и надежности. Например, прозрачные системы оценки поставщиков и предварительная сертификация поощряют конкуренцию, подобную своего рода дарвиновскому естественному отбору, при котором стимулируется достижение и поддержание стабильности качества. Лучшие фирмы выигрывают больше бизнеса, а другие стремятся наверстать упущенное или погибают. Такие компании, как Xometry и Fictiv, поставщики промышленных деталей по запросу, проводят строго контролируемые программы квалификации и сертификации поставщиков, чтобы стимулировать выбор поставщиков, которые поставляют высококачественные и стабильные детали.Лучшие поставщики получают доступ к более крупным и приоритетным заданиям, что заставляет других поставщиков повышать свою согласованность.

Один из новых методов управления включает «преднамеренное ограничение», которое намеренно ограничивает использование принтеров оптимальным диапазоном ресурса. Не все технологии одинаковы, поэтому знание тонкостей их производительности в определенных границах, таких как ограничения по размеру, выбор материалов и размеры партий, позволяет производителю в полной мере использовать преимущества данного 3D-принтера.Например, 3DEO ограничивает свое внимание небольшими сложными металлическими деталями, максимальный объем которых составляет один кубический дюйм. Это позволяет 3DEO не только максимально использовать возможности своих принтеров, сосредоточив внимание на том, в чем они действительно преуспевают, но и заполнять рабочую камеру для достижения оптимальной экономики.

Не все источники изменчивости полностью устранены. К ним относятся способ подключения машин к сети, а также форма и структура данных и рабочий процесс в узлах системы и из них. Однако по мере того, как фирмы разрабатывают протоколы и платформы для управления своими распределенными производственными системами, эти проблемы в конечном итоге будут решены.