Коэффициент паропроницаемости глины: Паропроницаемость глины. Паропроницаемость стен – избавляемся от вымыслов. Просадки, пыление и другие неисправности

Паропроницаемость глины. Паропроницаемость стен – избавляемся от вымыслов. Просадки, пыление и другие неисправности

Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.

Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.

Что такое паропроницаемость

Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.

Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).

Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.

Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.

Какая паропроницаемость у строительных материалов

Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).
Битум 0,008
Тяжелый бетон 0,03
Автоклавный газобетон 0,12
Керамзитобетон 0,075 — 0,09
Шлакобетон 0,075 — 0,14
Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе)
Известковый раствор 0,12
Гипсокартон, гипс 0,075
Цементно-песчаная штукатурка 0,09
Известняк (в зависимости от плотности) 0,06 — 0,11
Металлы 0
ДСП 0,12 0,24
Линолеум 0,002
Пенопласт 0,05-0,23
Полиурентан твердый, полиуретановая пена
0,05
Минеральная вата 0,3-0,6
Пеностекло 0,02 -0,03
Вермикулит 0,23 — 0,3
Керамзит 0,21-0,26
Дерево поперек волокон 0,06
Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11

Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.

Как конструировать утепление — по пароизоляционным качествам

Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.

Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.

Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.

Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.

Разделение слоев пароизолятором

Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.

Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?

Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.

Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.

Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.

Международная классификация пароизоляционных качеств материалов

Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.

Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.

Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.

Коэффициент сопротивляемости движению пара

Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).
Воздух 1, 1
Битум 50 000, 50 000
Пластики, резина, силикон — >5 000, >5 000
Тяжелый бетон 130, 80
Бетон средней плотности 100, 60
Полистирол бетон 120, 60
Автоклавный газобетон 10, 6
Легкий бетон 15, 10
Искусственный камень 150, 120
Керамзитобетон 6-8, 4
Шлакобетон 30, 20
Обожженная глина (кирпич) 16, 10
Известковый раствор 20, 10
Гипсокартон, гипс 10, 4
Гипсовая штукатурка 10, 6
Цементно-песчаная штукатурка 10, 6
Глина, песок, гравий 50, 50
Песчаник 40, 30
Известняк (в зависимости от плотности) 30-250, 20-200
Керамическая плитка?, ?
Металлы?, ?
OSB-2 (DIN 52612) 50, 30
OSB-3 (DIN 52612) 107, 64
OSB-4 (DIN 52612) 300, 135
ДСП 50, 10-20
Линолеум 1000, 800
Подложка под ламинат пластик 10 000, 10 000
Подложка под ламинат пробка 20, 10
Пенопласт 60, 60
ЭППС 150, 150
Полиурентан твердый, полиуретановая пена 50, 50
Минеральная вата 1, 1
Пеностекло?, ?
Перлитовые панели 5, 5
Перлит 2, 2
Вермикулит 3, 2
Эковата 2, 2
Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50

Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.

Откуда возникла легенда о дышащей стене

Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.

Действительно, это «дышащий» утеплитель. Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!

Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.

А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.

Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.

Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.

Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.

В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2. ч. Па/мг
) нормируется в главе 6 «Сопротивление паропроницанию ограждающих конструкций» СНиП II-3-79 (1998) «Строительная теплотехника».

Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) — 2007 год.

Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 «Теплотехнические свойства строительных материалов и изделий — Определение паропроницаемости». Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.
В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю.

Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO
, котрые определяют паропроницаемость «сухих» строительных материалов при влажности менее 70% и «влажных» строительных материалов при влажности более 70%. Помните, что при оставлении «пирогов» паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет «замокание» внутренних слоев строительных материалов и значительно увеличится их теплопроводность.

Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться: СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8:
Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои. По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ. — м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.

Механизм паропроницаемости строительных материалов:

При низкой относительной влажности влага из атмосферы в виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).

Показатели паропроницаемости «сухих» строительных материалов по ISO/FDIS 10456:2007(E) применимы для внутренних конструкций отапливаемых зданий. Показатели паропроницаемости «влажных» строительных материалов применимы для всех наружных конструкций и внутрених конструкций неотапливаемых зданий или дачных домов с переменным (временным) режимом отопления.

Паропроницаемость — способность материала пропускать или задерживать пар в результате разности парциального давления водяного пара при одинаковом атмосферном давлении по обеим сторонам материала.
Паропроницаемость характеризуется величиной коэффициента паропроницаемости или величиной коэффициента сопротивления проницаемости при воздействии водяного пара. Коэффициент паропроницаемости измеряется в мг/(м·ч·Па).

В воздухе всегда содержится какое-то количество водяного пара, причем в теплом всегда больше, чем в холодном. При температуре внутреннего воздуха 20 °С и относительной влажности 55% в воздухе содержится 8 г водяных паров на 1 кг сухого воздуха, которые создают парциальное давление 1238 Па. При температуре –10°С и относительной влажности 83% в воздухе содержится около 1 г пара на 1 кг сухого воздуха, создающего парциальное давление 216 Па. Из-за разницы парциальных давлений между внутренним и наружным воздухом через стену происходит постоянная диффузия водяных паров из теплого помещения наружу. В результате в реальных условиях эксплуатации материал в конструкциях находится в несколько увлажненном состоянии. Степень увлажнения материала зависит от температурно-влажностных условий снаружи и внутри ограждения. Изменение коэффициента теплопроводности материала в эксплуатируемых конструкциях учитывается коэффициентами теплопроводности λ(A) и λ(Б), которые зависят от зоны влажности местного климата и влажностного режима помещения.
В результате диффузии водяных паров в толще конструкции происходит движение влажного воздуха из внутренних помещений. Проходя через паропроницаемые конструкции ограждения, влага испаряется наружу. Но если у наружной поверхности стены расположен слой материала, не пропускающий или плохо пропускающий водяные пары, то влага начинает скапливаться у границы паронепроницаемого слоя, вызывая отсыревание конструкции. В результате теплозащита влажной конструкции резко понижается, и она начинает промерзать. в данном случае возникает необходимость установки пароизоляционного слоя с теплой стороны конструкции.

Вроде бы всё относительно просто, но про паропроницаемость зачастую вспоминают только в контексте «дышащести» стен. Однако, это краеугольный камень в выборе утеплителя! К нему нужно подходить очень и очень осторожно! Нередки случаи, когда домовладелец утепляет дом, исходя лишь из показателя теплосопротивления, например, деревянный дом пенопластом. В результате получает загнивающие стены, плесень по всем углам и винит в этом «неэкологичный» утеплитель. Что касается пенопласта, то из за своей малой паропроницаемости его нужно использовать с умом и очень хорошо подумать, подходит ли он вам. Именно по этому показателю зачастую ватные или любые другие пористые утеплители подходят лучше для утепления стен снаружи. Кроме того, с ватными утеплителями сложнее ошибиться. Однако, бетонные или кирпичные дома можно без опасений утеплять и пенопластом — в этом случае пенопласт «дышит» лучше, чем стена!

В таблице ниже приведены материалы из списка ТКП, показатель паропроницаемости — последний столбец μ.

Как понять, что такое паропроницаемость, и зачем она нужна. Многие слышали, а некоторые и активно употребляют термин «дышашие стены» — так вот, «дышашими» такие стены называют потому, что они способны пропускать воздух и водяной пар через себя. Некоторые материалы (например, керамзит, дерево, все ватные утеплители) хорошо пропускают пар, а некоторые очень плохо (кирпич, пенопласты, бетон). Выдыхаемый человеком, выделяемый при приготовлении пищи или принятии ванной пар, если в доме нет вытяжки, создаёт повышенную влажность. Признаком этого является появление конденсата на окнах или на трубах с холодной водой. Считается, что если стена имеет высокую паропроницаемость, то в доме легко дышится. На самом же деле, это не совсем так!

В современном доме, даже если стены сделаны из «дышащего» материала, 96% пара удаляется из помещений через вытяжку и форточку, и только 4% через стены. Если на стены наклеены виниловые или флизиленовые обои, то стены влагу не пропускают. А если стены действительно «дышащие», то есть без обоев и прочей пароизоляции, в ветренную погоду из дома выдувает тепло. Чем выше паропроницаемость конструкционного материала (пенобетон, газобетон и прочие тёплые бетоны), тем больше он может набрать влаги, и как следствие, у него более низкая морозостойкость. Пар, выходя из дома через стену, в «точке росы» превращается в воду. Теплопроводность отсыревшего газоблока увеличивается многократно, то есть в доме будет, мягко говоря, очень холодно. Но самое страшное, что при падении ночью температуры, точка росы смещается внутрь стены, а конденсат, находящийся в стене замерзает. Вода при замерзании расширяется и частично разрушает структуру материала. Несколько сотен таких циклов приводят к полному разрушению материала. Поэтому паропроницаемость строительных материалов может сослужить вам плохую службу.

Про вред повышенной паропроницаемости в интернете гуляет с сайта на сайт . Приводить её содержание на своём сайте я не буду в силу некоторого несогласия с авторами, однако избранные моменты хочется озвучить. Так, например, известный производитель минерального утеплителя, компания Isover, на своём англоязычном сайте
изложила «золотые правила утепления» (What are the golden rules of insulation?
) из 4-х пунктов:

    Эффективная изоляция. Используйте материалы с высоким термическим сопротивлением (низкой теплопроводностью). Самоочевидный пункт, не требующий особых комментариев.

    Герметичность. Хорошая герметичность является необходимым условием для эффективной системы теплоизоляции! Негерметичная теплоизоляция, независимо от её коэффициента теплоизоляции, может увеличивать потребление энергии от 7 до 11% на отопление здания.
    Поэтому о герметичности здания следует задумываться ещё на стадии проектирования. А по окончании работ проверить здание на герметичность.

    Контролируемая вентиляция. Именно на вентиляцию возлагается задача по удалению излишней влажности и пара. Вентиляция не должа и не может осуществляться за счёт нарушения герметичности ограждающих конструкций!

    Качественный монтаж. Об этом пункте, я думаю, тоже нет нужды говорить.

Важно отметить, что компания Isover не выпускает какие-либо пенопластовые утеплители, они занимаются исключительно минераловатными утеплителями, т.е. продуктами, имеющими наиболее высокий показатель паропроницаемости! Это действительно заставляет задуматься: как же так, вроде бы паропроницаемость необходима для отвода влаги, а производители рекомендуют полную герметичность!

Дело тут в недопонимании этого термина. Паропроницаемость материалов не предназначена для отвода влаги из жилого помещения — паропроницаемость нужна для отвода влаги из утеплителя
! Дело в том, что любой пористый утеплитель не является по сути самим утеплителем, он лишь создаёт структуру, удерживающую истинный утеплитель — воздух — в замкнутом объёме и по возможности неподвижным. Если вдруг образуется такое неблагоприятное условие, что точка росы оказывается в паропроницаемом утеплителе, то в нём будет конденсироваться влага. Эта влага в утеплителе берётся не из помещения! Воздух сам всегда содержит в себе какое-то количество влаги, и именно эта естественная влага и представляет угрозу утеплителю. Вот для отвода этой влаги наружу и нужно, чтобы после утеплителя были слои с не меньшей паропроницаемостью.

Семья из четырёх человек за сутки в среднем выделяет пар, равный 12 литрам воды! Эта влага из воздуха внутренних помещений никоим образом не должа попадать в утеплитель! Куда девать эту влагу — это вообще не должно никоим образом волновать утеплитель — его задача лишь утеплять!

Пример 1

Давайте разберём вышесказанное на примере. Возьмём две стены каркасного дома одинаковой толщины и одинакового состава (изнутри к наружному слою), отличатся буду они только видом утеплителя:

Лист гипсокартона (10мм) — OSB-3 (12мм) — Утеплитель (150мм) — ОSB-3 (12мм) — вентзазор (30мм) — ветрозащита — фасад.

Утеплитель выберем с абсолютно одинаковой теплопроводностью — 0,043 Вт/(м °С), основное, десятикратное отличие между ними только в паропроницаемости:

Плотность ρ= 12 кг/м³.

Коэффициент паропроницаемости μ= 0.035 мг/(м ч Па)

Коэф. теплопроводности в климатических условиях Б (худший показатель) λ(Б)= 0.043 Вт/(м °С).

Плотность ρ= 35 кг/м³.

Коэффициент паропроницаемости μ= 0.3 мг/(м ч Па)

Конечно, условия расчёта я тоже использую абсолютно одинаковые: температура внутри +18°С, влажность 55%, температура снаружи -10°С, влажность 84%.

Расчёт я провел в теплотехническом калькуляторе
, кликнув по фото, вы перейдёте прямо на страницу расчёта:

Как видно из расчёта, теплосопротивление обоих стен совершенно одинаково (R=3. 89), и даже точка росы у них расположена почти одинаково в толще утеплителя, однако, из за высокой паропроницаемости в стене с эковатой будет конденсироваться влага, сильно увлажняя утеплитель. Как бы ни была хороша сухая эковата, сырая эковата тепло держит во много раз хуже. А если допустить, что температура на улице опустится до -25°С, то зона конденсации составит почти 2/3 утеплителя. Такая стена не удовлетворяет нормам по защите от переувлажнения! С пенополистиролом ситуация принципиально другая потому, что воздух в нём находится в замкнутых ячейках, ему просто неоткуда набрать достаточное количество влаги для выпадения росы.

Справедливости ради нужно сказать, что эковату без пароизоляционных плёнок не укладывают! И если добавить в «стеновой пирог» пароизоляционную плёнку между ОSB и эковатой с внутренней стороны помещения, то зона конденсации практически выйдет из утеплителя и конструкция полностью будет удовлетворять требованиям по увлажнению (см. картинку слева). Однако, устройство пароиозяции практически лишает смысла размышления о пользе для микроклимата помещения эффекта «дыхания стены». Пароизоляционная мембрана имеет коэффициент паропроницаемости около 0,1 мг/(м·ч·Па), а порой пароизолируют полиэтиленовыми плёнками или утеплителями с фольгированной стороной — их коэффициент паропроницаемости стремится к нулю.

Но низкая паропроницаемость тоже далеко не всегда хороша! При утеплении достаточно хорошо паропроницаемых стен из газо- пенобетона экструдированным пенополистиролом без пароизоляции изнутри в доме непременно поселится плесень, стены будут влажными, а воздух будет совсем не свеж. И даже регулярное проветривание не сможет высушить такой дом! Давайте смоделируем ситуацию, противоположную прошлой!

Пример 2

Стена на этот раз будет состоять из следующих элементов:

Газобетон марки D500 (200мм) — Утеплитель (100мм) — вентзазор (30мм) — ветрозащита — фасад.

Утеплитель выберем точно такой же, и более того, стену сделаем с точно таким же теплосопротивлением (R=3.89).

Как видим, при совершенно равных теплотехнических характеристиках мы можем получить радикально противоположные результаты от утепления одними и теми же материалами!!! Нужно отметить, что во втором примере обе конструкции удовлетворяют нормам по защите от переувлажнения, не смотря на то, что зона конденсации попадает в газосиликат. Такой эффект связан с тем, что плоскость максимального увлажнения попадает в пенополистирол, а из за его низкой паропроницаемости в нём влага не конденсируется.

В вопросе паропроницаемости нужно разобраться досконально ещё до того, как вы решите, как и чем вы будете утеплять свой дом!

Слоёные стены

В современном доме требования к теплоизоляции стен столь высоки, что однородная стена уже не способна соответствовать им. Согласитесь, при требовании к теплосопротивлению R=3 делать однородную кирпичную стену толшиной 135 см не вариант! Современные стены — это многослойные конструкции, где есть слои, выполняющие роль теплоизоляции, конструктивные слои, слой наружной отделки, слой внутренней отделки, слои паро- гидро- ветро-изоляций. В связи с разнообразными характеристиками каждого слоя очень важно правильно их располагать! Основное правило в расположении слоёв конструкции стены таково:

Паропроницаемость внутреннего слоя должна быть ниже, чем наружного, для свободного выходы пара за стены дома. При таком решении «точка росы» перемещается к наружной стороне несущей стены и не разрушает стен здания. Для предотврощения выпадения конденсата внутри ограждающей конструкции сопротивление теплопередаче в стене должно уменьшаться, а сопротивление паропроницанию возрастать снаружи внутрь.

Думаю, нужно это проиллюстрировать для лучшего понимания.

Паропроницаемость материала выражена в его способности пропускать водяной пар. Данное свойство противостоять проникновению пара или позволять ему проходить сквозь материал определяется уровнем коэффициента паропроницаемости, который обозначается µ.
Это значение, которое звучит как «мю», выступает в качестве относительной величины сопротивления переносу пара в сравнении с характеристиками сопротивления воздуха.

Существует таблица, которая отражает способность материала к паропереносу, ее можно увидеть на рис. 1. Таким образом, значение мю для минеральной ваты равно 1, это указывает на то, что она способна пропускать водяной пар так же хорошо, как и сам воздух. Тогда как это значение для газобетона равно 10, это означает, что он справляется с проведением пара в 10 раз хуже воздуха. Если показатель мю умножить на толщину слоя, выраженную в метрах, это позволит получить равную по уровню паропроницаемости толщину воздуха Sd (м).

Из таблицы видно, что для каждой позиции показатель паропроницаемости указан при разном состоянии. Если заглянуть в СНиП, то можно увидеть расчетные данные показателя мю при отношении влаги в теле материала, приравненном к нулю.

Рисунок 1. Таблица паропроницаемости стройматериалов

По этой причине при приобретении товаров, которые предполагается использовать в процессе дачного строительства, предпочтительнее брать в расчет международные стандарты ISO, так как они определяют показатель мю в сухом состоянии, при уровне влажности не более 70% и показателе влажности более 70%.

При выборе строительных материалов, которые лягут в основу многослойной конструкции, показатель мю слоев, находящихся изнутри, должен быть ниже, в противном случае со временем внутри расположенные слои станут намокать, вследствие этого они потеряют свои теплоизоляционные качества.

При создании ограждающих конструкций нужно позаботиться об их нормальном функционировании. Для этого следует придерживаться принципа, который гласит, что уровень мю материала, который расположен в наружном слое, должен в 5 раз или больше превышать упомянутый показатель материала, находящегося во внутреннем слое.

Механизм паропроницаемости

При условиях незначительной относительной влажности частички влаги, которые содержатся в атмосфере, проникают сквозь поры строительных материалов, оказываясь там в виде молекул пара. В момент увеличения уровня относительной влажности поры слоев накапливают воду, что становится причиной намокания и капиллярного подсоса.

В момент повышения уровня влажности слоя его показатель мю увеличивается, таким образом, уровень сопротивления паропроницаемости снижается.

Показатели паропроницаемости неувлажненных материалов применимы в условиях внутренних конструкций построек, которые имеют отопление. А вот уровни паропроницаемости увлажненных материалов применимы для любых конструкций построек, которые не отапливаются.

Уровни паропроницаемости, которые являются частью наших норм, не во всех случаях эквивалентны показателям, которые принадлежат к международным стандартам. Так, в отечественных СНиП уровень мю керамзито- и шлакобетона почти не отличается, тогда как по международным стандартам данные отличаются между собой в 5 раз. Уровни паропроницаемости ГКЛ и шлакобетона в отечественных нормах практически одинаковы, а в международных стандартах данные отличаются в 3 раза.

Существуют различные способы определения уровня паропроницаемости, что касается мембран, то можно выделить следующие способы:

  1. Американский тест с установленной вертикально чашей.
  2. Американский тест с перевернутой чашей.
  3. Японский тест с вертикальной чашей.
  4. Японский тест с перевернутой чашей и влагопоглотителем.
  5. Американский тест с вертикальной чашей.

В японском тесте используется сухой влагопоглотитель, который расположен под тестируемым материалом. Во всех тестах используется уплотнительный элемент.

Часто в строительных статьях встречается выражение — паропроницаемость бетонных стен. Означает она способность материала пропускать водяные пары, по-народному – «дышать». Данный параметр имеет большое значение, так как в жилом помещении постоянно образуются продукты жизнедеятельности, которые необходимо постоянно выводить наружу.

Общие сведения

Если не создать нормальную вентиляцию в помещении, в нем будет создаваться сырость, что приведет к появлению грибка и плесени. Их выделения могут принести вред нашему здоровью.

С другой стороны — паропроницаемость влияет на способность материала накапливать в себе влагу.Это также плохой показатель, так как чем больше он сможет ее в себе удерживать, тем выше вероятность возникновения грибка, гнилостных проявлений, а также разрушений при замерзании.

Паропроницаемость обозначают латинской буквой μ и измеряют в мг/(м*ч*Па). Величина показывает количество водяного пара, которое может пройти через стеновой материал на площади 1 м 2 и при его толщине 1 м за 1 час, а также разнице наружного и внутреннего давления 1 Па.

Высокая способность проведения водяных паров у:

  • пенобетона
    ;
  • газобетона
    ;
  • перлитобетона
    ;
  • керамзитобетона
    .

Замыкает таблицу — тяжелый бетон.

Совет: если вам необходимо в фундаменте сделать технологический канал, вам поможет алмазное бурение отверстий в бетоне.

Газобетон

  1. Использование материала в качестве ограждающей конструкции дает возможность избежать скопления ненужной влаги внутри стен и сохранить ее теплосберегающие свойства, что предотвратит возможное разрушение.
  2. Любой газобетонный и пенобетонный блок имеет в своем составе ≈ 60% воздуха, благодаря чему паропроницаемость газобетона признана на хорошем ровне, стены в данном случае могут «дышать».
  3. Водяные парысвободно просачиваются через материал, но не конденсируются в нем.

Паропроницаемость газобетона, так же, как и пенобетона, значительно превосходит тяжелый бетон – у первого 0,18-0,23, у второго — (0,11-0,26), у третьего – 0,03 мг/м*ч*Па.

Особо хочется подчеркнуть, что структура материала обеспечивает ему эффективное удаление влаги в окружающую среду, так что даже при замерзании материала он не разрушается – она вытесняется наружу через открытые поры. Поэтому, подготавливая , следует учитывать данную особенность и подбирать соответствующие штукатурки, шпаклевки и краски.

Инструкция строго регламентирует, чтобы их параметры паропроницаемости были не ниже газобетонных блоков, применяющихся для строительства.

Совет: не забывайте, что параметры паропроницаемости зависят от плотности газобетона и могут отличаться наполовину.

К примеру, если вы используете D400 – у них коэффициент равен 0,23 мг/м ч Па, а у D500 он уже ниже — 0,20 мг/м ч Па. В первом случае цифры говорят о том, что стены будут иметь более высокую «дышащую» способность. Так что при подборе отделочных материалов для стен из газобетона D400, следите, чтобы у них коэффициент паропроницаемости был такой же или выше.

В противном случае это приведет к ухудшению отвода влаги из стен, что скажется на снижении уровня комфорта проживания в доме. Также следует учесть, что если вами была применена для наружной отделки паропроницаемая краска для газобетона, а для внутренней – непаропроницаемые материалы, пар будет просто скапливаться внутри помещения, делая его влажным.

Керамзитобетон

Паропроницаемость керамзитобетонных блоков зависит от количества наполнителя в его составе, а именно керамзита – вспененной обожженной глины. В Европе такие изделия называют эко- или биоблоками.

Совет: если у вас не получается разрезать керамзитоблок обычным кругом и болгаркой, используйте алмазный.
Например, резка железобетона алмазными кругами дает возможность быстро решить поставленную задачу.

Полистиролбетон

Материал является еще одним представителем ячеистых бетонов. Паропроницаемость полистиролбетона обычно приравнивается к дереву. Изготовить его можно своими руками.

Сегодня больше внимания начинает уделяться не только тепловым свойствам стеновых конструкций, а и комфортности проживания в сооружении. По тепловой инертности и паропроницаемости полистиролбетон напоминает деревянные материалы, а добиться сопротивления теплопередачи можно с помощью изменения его толщины.Поэтому обычно применяют заливной монолитный полистиролбетон, который дешевле готовых плит.

Вывод

Из статьи вы узнали, что есть такой параметр у стройматериалов, как паропроницаемость. Он дает возможность выводить влагу за пределы стен строения, улучшая их прочность и характеристики. Паропроницаемость пенобетона и газобетона, а также тяжелого бетона отличается своими показателями, что необходимо учитывать при выборе отделочных материалов. Видео в этой статье поможет найти вам дополнительную информацию по этой тематике.

Таблица паропроницаемости различных строительных материалов

В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2ч Па/мг) нормируется в главе 6 “Сопротивление паропроницанию ограждающих конструкций” СНиП II-3-79 (1998) “Строительная теплотехника”.

Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) – 2007 год.

Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 “Теплотехнические свойства строительных материалов и изделий – Определение паропроницаемости”.

Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю.Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO, котрые определяют паропроницаемость “сухих” строительных материалов при влажности менее 70% и “влажных” строительных материалов при влажности более 70%. Помните, что при оставлении “пирогов” паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет “замокание” внутренних слоев строительных материалов и значительно увеличится их теплопроводность.

Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться: СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8:Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои.

По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ.

– м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.

Механизм паропроницаемости строительных материалов:

При низкой относительной влажности влага из атмосферы транспортируется через поры строительных материаловв виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).

Пример пренебрежения паропроницаемостью строительных материалов в многослойных стенах: укрытие деревянных стен паронепроницаемым рубероидом привело к биологическому разрушению дерева в условиях постоянного увлажнения. При укрытии ячеистых бетонов паронепроницаемыми материалами(кирпичная кладка, ЭППС) происходит переувлажнение стен и их постепенное разрушение при периодическом промерзании.

Показатели паропроницаемости “сухих” строительных материалов по ISO/FDIS 10456:2007(E) применимы для внутренних конструкций отапливаемых зданий. Показатели паропроницаемости “влажных” строительных материалов применимы для всех наружных конструкций и внутрених конструкций неотапливаемых зданий или дачных домов с переменным (временным) режимом отопления.

ТАБЛИЦА СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ

Таблицаплотности, теплопроводности ипаропроницаемости различных строительныхматериалов.Основные эффективные теплоизоляционные,гидроизоляционные и пароизоляционныематериалы выделены.

Приведенысредние значения для материалов различныхпроизводителей. Более точные данные потеплоизоляционным материалам см. тут.

Материал Плотность, кг/м3 Теплопроводность, Вт/(м*С) Паропроницаемость,Мг/(м*ч*Па) Эквивалентная1(при сопротивлении теплопередаче = 4,2м2*С/Вт)   толщина, м Эквивалентная2(при сопротивление паропроницанию =1,6м2*ч*Па/мг) толщина, м Железобетон 2500 1.69 0.03 7.10 0.048 Бетон 2400 1. 51 0.03 6.34 0.048 Керамзитобетон 1800 0.66 0.09 2.77 0.144 Керамзитобетон 500 0.14 0.30 0.59 0.48 Кирпич красный глиняный 1800 0.56 0.11 2.35 0.176 Кирпич, силикатный 1800 0.70 0.11 2.94 0.176 Кирпич керамический пустотелый (брутто1400) 1600 0.41 0.14 1.72 0.224 Кирпич керамический пустотелый (брутто1000) 1200 0.35 0.17 1.47 0.272 Пенобетон 1000 0.29 0.11 1.22 0.176 Пенобетон 300 0.08 0.26 0.34 0.416 Гранит 2800 3.49 0.008 14.6 0.013 Мрамор 2800 2.91 0.008 12.2 0.013 Сосна, ель поперек волокон 500 0.09 0.06 0.38 0.096 Дуб поперек волокон 700 0.10 0.05 0.42 0.08 Сосна, ель вдоль волокон 500 0.18 0.32 0.75 0.512 Дуб вдоль волокон 700 0.23 0.30 0.96 0.48 Фанера клееная 600 0.12 0.02 0.50 0.032 ДСП, ОСП 1000 0.15 0.12 0.63 0.192 ПАКЛЯ 150 0.05 0.49 0.21 0.784 Гипсокартон 800 0.15 0.075 0.63 0.12 Картон облицовочный 1000 0.18 0.06 0.75 0.096 Минвата2000.0700.490.300.784Минвата1000.0560.560.230.896Минвата500.0480.600.200.96ПЕНОПОЛИСТИРОЛЭКТРУДИРОВАННЫЙ330.0310.0130.130.021ПЕНОПОЛИСТИРОЛ ЭКТРУДИРОВАННЫЙ450. 0360.0130.130.021Пенополистирол1500.050.050.210.08Пенополистирол1000.0410.050.170.08Пенополистирол400.0380.050.160.08Пенопласт ПВХ 125 0.052 0.23 0.22 0.368 ПЕНОПОЛИУРЕТАН800.0410.050.170.08ПЕНОПОЛИУРЕТАН600.0350.00.150.08ПЕНОПОЛИУРЕТАН400.0290.050.120.08ПЕНОПОЛИУРЕТАН300.0200.050.090.08Керамзит 800 0.18 0.21 0.75 0.336 Керамзит 200 0.10 0.26 0.42 0.416 Песок 1600 0.35 0.17 1.47 0.272 Пеностекло 400 0.11 0.02 0.46 0.032 Пеностекло 200 0.07 0.03 0.30 0.048 АЦП 1800 0.35 0.03 1.47 0.048 Битум 1400 0.27 0.008 1.13 0.013 ПОЛИУРЕТАНОВАЯ МАСТИКА14000.250.000231.050.00036ПОЛИМОЧЕВИНА11000.210.000230.880.00054Рубероид, пергамин 600 0.17 0.001 0.71 0.0016 Полиэтилен 1500 0.30 0.00002 1.26 0.000032 Асфальтобетон 2100 1.05 0.008 4.41 0.0128 Линолеум 1600 0.33 0.002 1.38 0.0032 Сталь 7850 58 0 243 0 Алюминий 2600 221 0 928 0 Медь 8500 407 0 1709 0 Стекло 2500 0.76 0 3.19 0

1- сопротивление теплопередаче ограждающихконструкций жилых зданий в Московскомрегионе, строительство которых начинаетсяс 1 января 2000 года. 2 – сопротивлениепаропроницанию внутреннего слоя стеныдвухслойной стены помещения с сухимили нормальным режимом, свыше которогоне требуется определять сопротивлениепаропроницанию ограждающей конструкции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

    Дата: 31-03-2015Просмотров: 189Комментариев: Рейтинг: 22

Паропроницаемость материала выражена в его способности пропускать водяной пар. Данное свойство противостоять проникновению пара или позволять ему проходить сквозь материал определяется уровнем коэффициента паропроницаемости, который обозначается µ.Это значение, которое звучит как «мю», выступает в качестве относительной величины сопротивления переносу пара в сравнении с характеристиками сопротивления воздуха.

Диаграмма паропроницаемости наиболее распространенных строительных материалов.

Существует таблица, которая отражает способность материала к паропереносу, ее можно увидеть на рис. 1.

Таким образом, значение мю для минеральной ваты равно 1, это указывает на то, что она способна пропускать водяной пар так же хорошо, как и сам воздух. Тогда как это значение для газобетона равно 10, это означает, что он справляется с проведением пара в 10 раз хуже воздуха. Если показатель мю умножить на толщину слоя, выраженную в метрах, это позволит получить равную по уровню паропроницаемости толщину воздуха Sd (м).

Из таблицы видно, что для каждой позиции показатель паропроницаемости указан при разном состоянии. Если заглянуть в СНиП, то можно увидеть расчетные данные показателя мю при отношении влаги в теле материала, приравненном к нулю.

Рисунок 1. Таблица паропроницаемости стройматериаловПо этой причине при приобретении товаров, которые предполагается использовать в процессе дачного строительства, предпочтительнее брать в расчет международные стандарты ISO, так как они определяют показатель мю в сухом состоянии, при уровне влажности не более 70% и показателе влажности более 70%.При выборе строительных материалов, которые лягут в основу многослойной конструкции, показатель мю слоев, находящихся изнутри, должен быть ниже, в противном случае со временем внутри расположенные слои станут намокать, вследствие этого они потеряют свои теплоизоляционные качества.При создании ограждающих конструкций нужно позаботиться об их нормальном функционировании.

Для этого следует придерживаться принципа, который гласит, что уровень мю материала, который расположен в наружном слое, должен в 5 раз или больше превышать упомянутый показатель материала, находящегося во внутреннем слое.При условиях незначительной относительной влажности частички влаги, которые содержатся в атмосфере, проникают сквозь поры строительных материалов, оказываясь там в виде молекул пара. В момент увеличения уровня относительной влажности поры слоев накапливают воду, что становится причиной намокания и капиллярного подсоса.В момент повышения уровня влажности слоя его показатель мю увеличивается, таким образом, уровень сопротивления паропроницаемости снижается.Показатели паропроницаемости неувлажненных материалов применимы в условиях внутренних конструкций построек, которые имеют отопление. А вот уровни паропроницаемости увлажненных материалов применимы для любых конструкций построек, которые не отапливаются.Схема прибора для определения паропроницаемости.Уровни паропроницаемости, которые являются частью наших норм, не во всех случаях эквивалентны показателям, которые принадлежат к международным стандартам.

Так, в отечественных СНиП уровень мю керамзито- и шлакобетона почти не отличается, тогда как по международным стандартам данные отличаются между собой в 5 раз. Уровни паропроницаемости ГКЛ и шлакобетона в отечественных нормах практически одинаковы, а в международных стандартах данные отличаются в 3 раза.Существуют различные способы определения уровня паропроницаемости, что касается мембран, то можно выделить следующие способы:Американский тест с установленной вертикально чашей.Американский тест с перевернутой чашей.Японский тест с вертикальной чашей.Японский тест с перевернутой чашей и влагопоглотителем.Американский тест с вертикальной чашей.В японском тесте используется сухой влагопоглотитель, который расположен под тестируемым материалом. Во всех тестах используется уплотнительный элемент.Вернуться к оглавлениюНекоторые производители указывают на зависимость атмосферы легкости в доме от показателей паропроницаемости строительных материалов.

Однако если даже вы возьмете в расчет данные таблиц, в которых отражены уровни мю каждого материала, и выберете тот, который обладает наиболее высоким показателем, то через стены станет удаляться лишь 4% всего объема удаляемого из помещения пара, тогда как 96% станут устраняться посредством вытяжек и окон.А вот если помещение обклеено виниловыми или флизелиновыми обоями, то стены и вовсе не способны пропускать влагу.Если после строительства не был использован утеплительный материал, то в ветреную погоду или сильный мороз из комнат будет уходить тепло. Кроме того, долговечность стен, которые имеют высокую степень паропроницаемости и низкую плотность, гораздо ниже. Ведь при более высоком уровне паропроницаемости материал больше способен накапливать влагу, которая замерзает при морозах, уменьшая морозостойкость.Производители материалов по типу газобетона или пенобетона хитрят, когда указывают конечную теплопроводность, так как при расчетах используется материал в идеально сухом состоянии.

Если блок, выполненный из газобетона, наберет влагу, то его способности к теплоизоляции будут снижены в 5 раз, таким образом, стены в доме, которые выстроены из этого материала, будут отлично выпускать теплый воздух из помещений. Ситуация ухудшится, если температура снизится, это станет причиной смещения точки росы внутрь стены, конденсат, который образовался в стене, замерзнет.Жидкость, замерзая, увеличится в размерах и станет способствовать разрушению материала. Через некоторое количество циклов замерзания и оттаивания материал полностью придет в негодность.

Поэтому не во всех случаях стоит выбирать тот материал, который имеет высокую степень паропроницаемости.Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.

Что такое паропроницаемость

Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.

Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).

Сопротивляемость слоя материала будет зависеть от его толщины.Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.

Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.

Какая паропроницаемость у строительных материалов

Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).Битум 0,008Тяжелый бетон 0,03 Автоклавный газобетон 0,12Керамзитобетон 0,075 — 0,09Шлакобетон 0,075 — 0,14Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе) Известковый раствор 0,12 Гипсокартон, гипс 0,075Цементно-песчаная штукатурка 0,09 Известняк (в зависимости от плотности) 0,06 — 0,11Металлы 0ДСП 0,12 0,24Линолеум 0,002 Пенопласт 0,05-0,23Полиурентан твердый, полиуретановая пена0,05 Минеральная вата 0,3-0,6 Пеностекло 0,02 -0,03Вермикулит 0,23 — 0,3Керамзит 0,21-0,26Дерево поперек волокон 0,06 Дерево вдоль волокон 0,32

Кирпичная кладка из силикатного кирпича на цементном растворе 0,11

Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.

Как конструировать утепление — по пароизоляционным качествам

Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.

Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.

Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.

Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.

Разделение слоев пароизолятором

Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.

Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?

Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.

Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.

Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.

Международная классификация пароизоляционных качеств материалов

Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.

Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом.

Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т. е. пенополистирол в 150 раз пропускает пар хуже чем воздух.

Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.

Коэффициент сопротивляемости движению пара

Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).Воздух 1, 1 Битум 50 000, 50 000Пластики, резина, силикон — >5 000, >5 000Тяжелый бетон 130, 80Бетон средней плотности 100, 60Полистирол бетон 120, 60Автоклавный газобетон 10, 6Легкий бетон 15, 10 Искусственный камень 150, 120Керамзитобетон 6-8, 4Шлакобетон 30, 20Обожженная глина (кирпич) 16, 10Известковый раствор 20, 10Гипсокартон, гипс 10, 4Гипсовая штукатурка 10, 6Цементно-песчаная штукатурка 10, 6Глина, песок, гравий 50, 50Песчаник 40, 30Известняк (в зависимости от плотности) 30-250, 20-200Керамическая плитка ?, ?Металлы ?, ?OSB-2 (DIN 52612) 50, 30OSB-3 (DIN 52612) 107, 64OSB-4 (DIN 52612) 300, 135ДСП 50, 10-20Линолеум 1000, 800Подложка под ламинат пластик 10 000, 10 000Подложка под ламинат пробка 20, 10Пенопласт 60, 60ЭППС 150, 150Полиурентан твердый, полиуретановая пена 50, 50Минеральная вата 1, 1Пеностекло ?, ?Перлитовые панели 5, 5Перлит 2, 2Вермикулит 3, 2Эковата 2, 2Керамзит 2, 2

Дерево поперек волокон 50-200, 20-50

Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.

Откуда возникла легенда о дышащей стене

Очень много компаний выпускает минеральную вату.

Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.

Действительно, это «дышащий» утеплитель.

Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!

Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.

А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.

Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.

Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.

Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.

    Стены дома должны быть и теплосберегающими и не дорогими в … Технология утепления стен «Мокрый фасад» получила наибольшую популярность. Это самое …

Источники:

  • dom.dacha-dom.ru
  • studfiles.net
  • ostroymaterialah.ru
  • teplodom1.ru

Паропроницаемость стен и материалов

Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.

Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.

Что такое паропроницаемость

Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.

Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).

Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.

Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.

Какая паропроницаемость у строительных материалов

Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).
Битум 0,008
Тяжелый бетон 0,03
Автоклавный газобетон 0,12
Керамзитобетон 0,075 — 0,09
Шлакобетон 0,075 — 0,14
Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе)
Известковый раствор 0,12
Гипсокартон, гипс 0,075
Цементно-песчаная штукатурка 0,09
Известняк (в зависимости от плотности) 0,06 — 0,11
Металлы 0
ДСП 0,12 0,24
Линолеум 0,002
Пенопласт 0,05-0,23
Полиурентан твердый, полиуретановая пена
0,05
Минеральная вата 0,3-0,6
Пеностекло 0,02 -0,03
Вермикулит 0,23 — 0,3
Керамзит 0,21-0,26
Дерево поперек волокон 0,06
Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11

Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.

Как конструировать утепление — по пароизоляционным качествам

Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.

Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.

Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.

Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.

Разделение слоев пароизолятором

Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.

Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?

Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.

Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.

Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.

Международная классификация пароизоляционных качеств материалов

Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.

Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.

Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.

Коэффициент сопротивляемости движению пара

Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).
Воздух 1, 1
Битум 50 000, 50 000
Пластики, резина, силикон — >5 000, >5 000
Тяжелый бетон 130, 80
Бетон средней плотности 100, 60
Полистирол бетон 120, 60
Автоклавный газобетон 10, 6
Легкий бетон 15, 10
Искусственный камень 150, 120
Керамзитобетон 6-8, 4
Шлакобетон 30, 20
Обожженная глина (кирпич) 16, 10
Известковый раствор 20, 10
Гипсокартон, гипс 10, 4
Гипсовая штукатурка 10, 6
Цементно-песчаная штукатурка 10, 6
Глина, песок, гравий 50, 50
Песчаник 40, 30
Известняк (в зависимости от плотности) 30-250, 20-200
Керамическая плитка ?, ?
Металлы ?, ?
OSB-2 (DIN 52612) 50, 30
OSB-3 (DIN 52612) 107, 64
OSB-4 (DIN 52612) 300, 135
ДСП 50, 10-20
Линолеум 1000, 800
Подложка под ламинат пластик 10 000, 10 000
Подложка под ламинат пробка 20, 10
Пенопласт 60, 60
ЭППС 150, 150
Полиурентан твердый, полиуретановая пена 50, 50
Минеральная вата 1, 1
Пеностекло ?, ?
Перлитовые панели 5, 5
Перлит 2, 2
Вермикулит 3, 2
Эковата 2, 2
Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50

Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.

Откуда возникла легенда о дышащей стене

Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.

Действительно, это «дышащий» утеплитель. Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!

Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.

А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.

Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.

Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.

Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.

Расчеты и пересчеты по паропроницаемостям ветрозащитных мембран. Сопротивление паропроницанию материалов и тонких слоев пароизоляции Паропроницаемость глины

Согласно СП 50.13330.2012 «Тепловая защита зданий», приложение Т, таблица Т1 «Расчетные теплотехнические показатели строительных материалов и изделий» коэффициент паропроницаемость оцинкованного нащельника (мю, (мг/(м*ч*Па)) будет равна:

Вывод: внутренний оцинкованный нащельник (смотрим рисунок 1) в светопрозрачных конструкциях может устанавливаться без пароизоляции.

Для устройства пароизоляционного контура рекомендуется:

Пароизоляция мест крепления оцинкованного листа, это можно обеспечить мастикой

Пароизоляция мест стыковки оцинкованного листа

Пароизоляция мест стыковки элементов (оцинкованный лист и витражный ригель или стойка)

Обеспечить отсутствие паропропускания через крепежные элементы (полые заклепки)

Термины и определения

Паропроницаемость
— способность материалов пропускать водяной пар через свою толщину.

Водяной пар
— газообразное состояние воды.

Паропроницаемость
— измеряется количеством водяного пара, проходящим через 1м2 площади, толщиной 1метр, в течении 1 часа, при разности давлений 1 Па. (согласно СНиПа 23-02-2003). Чем ниже паропроницаемость, тем лучше теплоизоляционный материал.

Коэффициент паропроницаемость (DIN 52615) (мю, (мг/(м*ч*Па)) это отношение паропроницаемости слоя воздуха толщиной 1 метр к паропроницаемости материала той же толщины

Паропроницаемость воздуха можно рассмотреть как константу, равную

0,625 (мг/(м*ч*Па)

Сопротивляемость слоя материала зависит от его толщины. Сопротивляемость слоя материала определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м2*ч*Па) /мг

Согласно СП 50.13330.2012 «Тепловая защита зданий», приложение Т, таблица Т1 «Расчетные теплотехнические показатели строительных материалов и изделий» коэффициент паропроницаемость (мю, (мг/(м*ч*Па)) будет равна:

Сталь стержневая, арматурная (7850кг/м3), коэфф. паропроницаемости мю = 0;

Алюминий (2600) = 0; Медь (8500) = 0; Стекло оконное (2500) = 0; Чугун (7200) = 0;

Железобетон (2500) = 0,03; Раствор цементно-песчаный (1800) = 0,09;

Кирпичная кладка из пустотелого кирпича (керамический пустотный с плотностью 1400кг/м3 на цементном песчаном растворе) (1600) = 0,14;

Кирпичная кладка из пустотелого кирпича (керамический пустотный с плотностью 1300кг/м3 на цементном песчаном растворе) (1400) = 0,16;

Кирпичная кладка из сплошного кирпича (шлакового на цементном песчаном растворе) (1500) = 0,11;

Кирпичная кладка из сплошного кирпича (глиняного обыкновенного на цементном песчаном растворе) (1800) = 0,11;

Плиты из пенополистирола плотностью до 10 — 38 кг/м3 = 0,05;

Рубероид, пергамент, толь (600) = 0,001;

Сосна и ель поперек волокон (500) = 0,06

Сосна и ель вдоль волокон (500) = 0,32

Дуб поперек волокон (700) = 0,05

Дуб вдоль волокон (700) = 0,3

Фанера клееная (600) = 0,02

Песок для строительных работ (ГОСТ 8736) (1600) = 0,17

Минвата, каменная (25-50 кг/м3) = 0,37; Минвата, каменная (40-60 кг/м3) = 0,35

Минвата, каменная (140-175 кг/м3) = 0,32; Минвата, каменная (180 кг/м3) = 0,3

Гипсокартон 0,075; Бетон 0,03

Статья дана в ознакомительных целях

В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2. ч. Па/мг
) нормируется в главе 6 «Сопротивление паропроницанию ограждающих конструкций» СНиП II-3-79 (1998) «Строительная теплотехника».

Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) — 2007 год.

Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 «Теплотехнические свойства строительных материалов и изделий — Определение паропроницаемости». Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.
В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю.

Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO
, котрые определяют паропроницаемость «сухих» строительных материалов при влажности менее 70% и «влажных» строительных материалов при влажности более 70%. Помните, что при оставлении «пирогов» паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет «замокание» внутренних слоев строительных материалов и значительно увеличится их теплопроводность.

Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться: СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8:
Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои. По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ. — м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.

Механизм паропроницаемости строительных материалов:

При низкой относительной влажности влага из атмосферы в виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).

Показатели паропроницаемости «сухих» строительных материалов по ISO/FDIS 10456:2007(E) применимы для внутренних конструкций отапливаемых зданий. Показатели паропроницаемости «влажных» строительных материалов применимы для всех наружных конструкций и внутрених конструкций неотапливаемых зданий или дачных домов с переменным (временным) режимом отопления.

Паропроницаемость стен – избавляемся от вымыслов.

В данной статье мы постараемся дать ответ на следующие частые вопросы: что такое паропроницаемость и нужна ли пароизоляция при строительстве стен дома из пеноблоков или кирпича. Вот только несколько типичных вопросов, которые задают наши клиенты:

«
Среди множества различных ответов на форумах прочитал я о возможности заполнения зазора между кладкой из поризованной керамики и облицовочным керамическим кирпичом обычным кладочным раствором. Не противоречит ли это правилу уменьшения паропроницаемости слоёв от внутренних к наружным, ведь паропроницаемость цементно-песчаного раствора более чем в 1,5 раза ниже, чем у керамики
?

»

Или вот еще: «
Здравствуйте. Имеется дом из газобетонных блоков, хотелось бы если не облицевать весь, то хотя бы украсить дом клинкерной плиткой, но в некоторых источниках пишут что нельзя прямо на стену — она должна дышать, как быть??? А то вот некоторые дают схему что можно…Вопрос: Как керамическая фасадная клинкерная плитка крепится к пеноблокам

Для правильных ответов на такие вопросы нам необходимо разобраться в понятиях «Паропроницаемость» и «Сопротивление паропереносу».

Итак, паропроницаемость слоя материала — это способность пропускать или задерживать водяной пар в результате разности парциального давления водяного пара при одинаковом атмосферном давлении на обеих сторонах слоя материала, характеризуемая величиной коэффициента паропроницаемости или сопротивлением проницаемости при воздействии водяного пара. Единица измерения
µ


— расчетный коэффициент паропроницаемости материала слоя ограждающей конструкции мг / (м час Па). Коэффициенты для различных материалов можно посмотреть в таблице в СНИП II-3-79.

Коэффициент сопротивления диффузии водяного пара – это безразмерная величина, показывающая, во сколько раз чистый воздух более проницаем для пара, чем какой-либо материал. Сопротивление же диффузии определяют как произведение коэффициента диффузии материала на его толщину в метрах и имеет размерность в метрах. Сопротивление паропроницанию многослойной ограждающей конструкции, определяют по сумме сопротивлений паропроницанию составляющих ее слоев. Но в пункте 6.4. СНИП II-3-79 указано: «Не требуется определять сопротивление паропроницанию следующих ограждающих конструкций: а) однородных (однослойных) наружных стен помещений с сухим или нормальным режимом; б) двухслойных наружных стен помещений с сухим или нормальным режимом, если внутренний слой стены имеет сопротивление паропроницанию более 1,6 м2 ч Па/мг.». Кроме того, в а в том же СНИПе говорится:

«Сопротивление паропроницанию воздушных прослоек в ограждающих конструкциях следует принимать равным нулю независимо от расположения и толщины этих прослоек».

Так что же получается в случае многослойных конструкций? Для исключения накопления влаги в многослойной стене при движении пара изнутри помещения наружу каждый последующий слой должен обладать большей абсолютной паропроницаемостью, чем предыдущий. Именно абсолютной, т.е. суммарной, подсчитанной с учетом толщины определенного слоя. Поэтому говорить однозначно, что газобетон нельзя, к примеру, облицевать клинкерной плиткой, нельзя. В данном случае значение имеет толщина каждого слоя стеновой конструкции. Чем больше толщина, тем меньше абсолютная паропроницаемость. Чем выше значение произведения µ*d, тем менее паропроницаем соответствующий слой материала. Другими словами, для обеспечения паропроницаемости стеновой конструкции произведение µ*d должно увеличиваться от внешних (наружных) слоёв стены к внутренним.

К примеру, облицевать газосиликатные блоки толщиной 200 мм клинкерной плиткой толщиной 14 мм нельзя. При таком соотношении материалов и их толщин способность пропускать пары у отделочного материала будет на 70% меньше, чем у блоков. Если же толщина несущей стены будет 400 мм, а плитки по прежнему 14 мм, то ситуация будет противоположной и способность пропускать пары у плитки будет на 15% больше, чем у блоков.

Для грамотной оценки правильности устройства стеновой конструкции Вам понадобятся значения коэффициентов сопротивления диффузии µ, которые представлены в нижеследующей таблице:

Наименование материала

Плотность, кг/м3

Теплопроводность, Вт/м*К

Коэффициент сопротивления диффузии

Клинкерный кирпич полнотелый

2000

1,05

Клинкерный кирпич пустотелый (с вертикальными пустотами)

1800

0,79

Керамический кирпич полнотелый, пустотелый и пористый и блоки

газосилиткатные.

0,18

0,38

0,41

1000

0,47

1200

0,52

Если для фасадной отделки используется керамическая плитка, то проблемы с паропроницаемостью не будет при любом разумном сочетании толщин каждого слоя стены. Коэффициент сопротивления диффузии µ у керамической плитки будет в диапазоне 9-12, что на порядок меньше, чем у клинкерной плитки. Для возникновения проблемы с паропроницаемостью стены облицованной керамической плиткой толщиной 20 мм, толщина несущей стены из газосиликатных блоков плотностью D500 должна быть менее 60 мм, что противоречит СНиП 3.03.01-87 «Несущие и ограждающие конструкции» п.7.11 таблица №28, который устанавливает минимальную толщину несущей стены 250 мм.

Аналогичным образом решается вопрос о заполнении зазоров между различными слоями кладочных материалов. Для этого достаточно рассмотреть данную конструкцию стены, чтобы определит сопротивление паропереносу каждого слоя, включая и заполненный промежуток. Действительно, в многослойной конструкции стены каждый последующий слой по направлению из помещения на улицу должен быть более паропроницаем, чем предыдущий. Рассчитаем значение сопротивления диффузии водяного пара для каждого слоя стены. Это значение определяется по формуле: произведение толщины слоя d на коэффициент сопротивления диффузии µ. Например, 1-й слой — керамический блок. Для него выбираем значение коэффициента сопротивления диффузии 5, используя таблицу, приведенную выше. Произведение d х µ = 0,38 х 5= 1,9. 2-й слой — обычный кладочный раствор — имеет коэффициент сопротивления диффузии µ = 100. Произведение d х µ =0,01 х 100 = 1. Таким образом, второй слой — обычный кладочный раствор — имеет значение сопротивления диффузии меньше, чем первый, и не является паробарьером.

Учитывая вышесказанное давайте разберем предполагаемые варианты конструкции стен:

1.
Несущая стена из KERAKAM Superthermo c облицовкой пустотелым клинкерным кирпичом FELDHAUS KLINKER.

Для упрощения расчетов примем, что произведение коэффициента сопротивления диффузии µ на толщину слоя материала d равно значению М. Тогда, М супертермо=0,38*6=2,28 метра, а М клинкера(пустотелый, формата NF)=0,115*70=8,05 метра. Поэтому при применении клинкерного кирпича необходим вентиляционный зазор:

В процессе стройки любой материал в первую очередь должен оцениваться по его эксплуатационно-техническим характеристикам. Решая задачу построить “дышащий” дом, что наиболее свойственно строениям из кирпича или дерева, или наоборот добиться максимальной сопротивляемости паропроницанию, необходимо знать и уметь оперировать табличными константами для получения расчетных показателей паропроницаемости строительных материалов.

Что такое паропроницаемость материалов

Паропроницаемость материалов
– способность пропускать или задерживать водяной пар в результате разности парциального давления водяного пара на обеих сторонах материала при одинаковом атмосферном давлении. Паропроницаемость характеризуется коэффициентом паропроницаемости или сопротивлением паропроницаемости и нормируется СНиПом II-3-79 (1998) «Строительная теплотехника», а именно главой 6 «Сопротивление паропроницанию ограждающих конструкций»

Таблица паропроницаемости строительных материалов

Таблица паропроницаемости представлена в СНиПе II-3-79 (1998) «Строительная теплотехника», приложении 3 «Теплотехнические показатели строительных материалов конструкций». Показатели паропроницаемости и теплопроводности наиболее распространенных материалов, используемых для строительства и утепления зданий представлены далее в таблице.

Материал

Плотность, кг/м3

Теплопроводность, Вт/(м*С)

Паропроницаемость, Мг/(м*ч*Па)

Алюминий

Асфальтобетон

Гипсокартон

ДСП, ОСП

Дуб вдоль волокон

Дуб поперек волокон

Железобетон

Картон облицовочный

Керамзит

Керамзит

Керамзитобетон

Керамзитобетон

Кирпич керамический пустотелый (брутто1000)

Кирпич керамический пустотелый (брутто1400)

Кирпич красный глиняный

Кирпич, силикатный

Линолеум

Минвата

Минвата

Пенобетон

Пенобетон

Пенопласт ПВХ

Пенополистирол

Пенополистирол

Пенополистирол

ПЕНОПОЛИСТИРОЛ ЭКТРУДИРОВАННЫЙ

ПЕНОПОЛИУРЕТАН

ПЕНОПОЛИУРЕТАН

ПЕНОПОЛИУРЕТАН

ПЕНОПОЛИУРЕТАН

Пеностекло

Пеностекло

Песок

ПОЛИМОЧЕВИНА

ПОЛИУРЕТАНОВАЯ МАСТИКА

Полиэтилен

Рубероид, пергамин

Сосна, ель вдоль волокон

Сосна, ель поперек волокон

Фанера клееная

Таблица паропроницаемости строительных материалов

В таблице даны значения сопротивления паропроницанию материалов и тонких слоев пароизоляции для распространенных . Сопротивление паропроницанию материалов Rп
может быть определено, как частное от деления толщины материала на его коэффициент паропроницаемости μ.

Следует отметить, что сопротивление паропроницанию может быть указано только для материала заданной толщины
, в отличие от , который к толщине материала не привязан и определяется только структурой материала. Для многослойных листовых материалов общее сопротивление паропроницанию будет равно сумме сопротивлений материала слоев.

Чему равно сопротивление паропроницанию?
Например, рассмотрим значение сопротивления паропроницанию обыкновенного толщиной 1,3 мм. По данным таблицы это значение равно 0,016 м 2 ·ч·Па/мг. Что же значит эта величина? Означает она следующее: через квадратный метр площади такого картона за 1 час пройдет 1 мг при разности его парциальных давлений у противоположных сторон картона, равной 0,016 Па (при одинаковых температуре и давлении воздуха с обеих сторон материала).

Таким образом, сопротивление паропроницанию показывает необходимую разность парциальных давлений водяного пара
, достаточную для прохода 1 мг водяного пара через 1 м 2 площади листового материала, указанной толщины, за 1 час. Согласно ГОСТ 25898-83, сопротивление паропроницанию определяют для листовых материалов и тонких слоев пароизоляции имеющих толщину не более 10 мм. Следует отметить, что пароизоляция с наибольшим сопротивлением паропроницанию в таблице — это .

Таблица сопротивления паропроницанию

МатериалТолщина слоя,
мм
Сопротивление Rп,
м 2 ·ч·Па/мг
Картон обыкновенный1,30,016
Листы асбоцементные60,3
Листы гипсовые обшивочные (сухая штукатурка)100,12
Листы древесно-волокнистые жесткие100,11
Листы древесно-волокнистые мягкие12,50,05
Окраска горячим битумом за один раз20,3
Окраска горячим битумом за два раза40,48
Окраска масляная за два раза с предварительной шпатлевкой и грунтовкой0,64
Окраска эмалевой краской0,48
Покрытие изольной мастикой за один раз20,6
Покрытие битумно-кукерсольной мастикой за один раз10,64
Покрытие битумно-кукерсольной мастикой за два раза21,1
Пергамин кровельный0,40,33
Полиэтиленовая пленка0,167,3
Рубероид1,51,1
Толь кровельный1,90,4
Фанера клееная трехслойная30,15

Источники:
1. Строительные нормы и правила. Строительная теплотехника. СНиП II-3-79. Минстрой России — Москва 1995.
2. ГОСТ 25898-83 Материалы и изделия строительные. Методы определения сопротивления паропроницанию.

Что такое паропроницаемость — Строительный журнал Palitrabazar.ru

Паропроницаемость материалов

В современном строительстве применяется множество видов строительных материалов. Одни из них прочны, другие долговечны, некоторые хорошо «держат» тепло или прекрасно выглядят. Важную роль при выборе стройматериала для стен дома имеет паропроницаемость – способность «дышать» и создавать комфортные условия для проживания. Разберемся, что это такое и какие материалы стоит выбрать для этого.

Что такое паропроницаемость

Паропроницаемостью материалов называют их способность пропускать или, наоборот, задерживать водяные пары, находящиеся в воздухе. Этот эффект объясняется за счет различия парциального (то есть создаваемого отдельными компонентами воздуха) давления водяного пара внутри и снаружи помещений.

Материалы с высокой паропроницаемостью будут эффективно пропускать влагу. При проектировании зданий используется количественная оценка этого показателя – коэффициент паропроницаемости µ («мю»), который измеряется в мг/(м·ч·Па) и показывает, какое количество паров (в мг) пропустит 1 метр данного материала за 1 час при данном давлении. Чем больше этот показатель, тем выше паропроницаемость материала.

При строительстве практическое значение имеет сравнительная оценка коэффициентов паропроницаемости для правильного выбора различных стеновых и отделочных материалов, и их сочетания в многослойных конструкциях стен современных домов. Ошибки в расчете паропроницаемости могут привести к негативным последствиям при эксплуатации построенного здания.

На что влияет паропроницаемость материалов

Важнейшим фактором комфортности дома для проживания является хороший микроклимат в помещениях. За его поддержание отвечает способность стен «дышать» — то есть сохранять влажностный режим воздуха, при необходимости поглощая или выделяя влагу в комнатах. А эта способность, в свою очередь, как раз и определяется паропроницаемостью материала, из которого сделаны стены.

При проживании в доме в зимний период важное значение для влажностного режима приобретает разница наружной и внутренней температуры. Водяные пары, выходя из помещения сквозь материалы стен, могут конденсироваться внутри стены, если паропроницаемость наружных слоев будет меньше, чем внутренних.

Задержка излишней влаги на внутренней поверхности или в толще стены может приводить к образованию плесени, которая не только портит внешний вид, но и наносит вред здоровью проживающих в доме людей. Кроме того, излишняя влажность повышает вероятность разрушения строительных конструкций.

При достаточно высоком содержании влаги в материале снижается его морозоустойчивость, так как при понижении температуры вода замерзает, образующийся лед распирает микропоры и растрескивает стены. Поэтому при строительстве домов из паропроницаемых материалов необходимо дополнительно принимать меры для защиты конструкций от промерзания.

Сравнение паропроницаемости строительных материалов

Ниже приводятся значения коэффициентов паропроницаемости µ для различных строительных материалов, а также их общая характеристика. Напомним, что чем выше «мю», тем большей паропроницаемостью обладает материал:

Материал

К. паропроницаемости µ, мг/(м·ч·Па)

Паропроницаемость дерева варьируется в широких пределах, что делает его универсальным строительным материалом. В зависимости от плотности древесины и расположения волокон, для деревянной стены можно добиться как низкой, так и высокой паропроницаемости. Поэтому деревянные дома хорошо «дышат», при этом оставаясь теплыми, комфортными и экологически безопасными.

Газобетон по своей паропроницаемости вплотную приближается к древесине, при этом обладая значительно большей прочностью и технологичностью. Из всех вариантов искусственного камня с ним могут сравниться по этому показателю только другие разновидности ячеистого бетона. Однако паропроницаемость газобетона в меньшей степени зависит от его плотности, тогда как для пенобетона эта зависимость выражена.

Характеристики пенобетона в значительной степени определяются применяемой технологией изготовления. Наилучшей паропроницаемостью обладают пенобетонные блоки с более крупными порами, имеющие малую плотность и, как следствие, меньшую прочность. Высокопрочные марки обладают мелкими порами, и по паропроницаемости ближе к классическому кирпичу, чем к газобетону.

Кирпич до сих пор остается наиболее универсальным и практичным строительным материалом, обладающим множеством положительных качеств. Но, к сожалению, хорошая паропроницаемость кирпичным стенам не свойственна. Только некоторые пустотелые виды керамического кирпича и современная «теплая» керамика приближаются по этому показателю к нижней границе паропроницаемости газобетона.

Классический железобетонный монолит не обладает почти никакой паропроницаемостью, уступая газобетону и дереву по этому показателю в 5-10 раз. Поэтому многие панельные дома, построенные в 70-е и 80-е годы, отличаются таким ужасным микроклиматом. В современном домостроении монолит используют в сочетании с мощной системой вентиляции, а в индивидуальном строительстве – только как силовые элементы дома.

Выбирая, какому материалу стоит отдать предпочтение при возведении стен вашего будущего дома, нужно учитывать не только его прочность, долговечность или внешний вид. Для индивидуального жилищного строительства важнейшее значение имеет создание комфортного микроклимата, экологическая чистота и безопасность для проживания.

С этой точки зрения непревзойденными стройматериалами остаются классическое дерево и современный газобетон. Только эти материалы позволяют стенам дома «дышать», а вам оставаться здоровыми, полными сил и энергии. При этом оба этих варианта отличаются отличной теплоизоляционной способностью, удобны в применении и экономичны в строительстве.

Паропроницаемость.

Паропроницаемость — это способность задерживать или пропускать водяной пар различными материалами в результате разности парциального давления водяного пара (давление пара при отсутствии других газов в системе) с учетом одинакового атмосферного давления с обеих сторон.

В период развития строительных технологий, появление новых строительных материалов, утеплителей, понятие паропроницаемость получило широкое применение и характеризуется коэффициентом паропроницаемости. Наиболее существенное значение, понятие паропроницаемости приобретает при анализе технических характеристик утеплителей, ведь способность накапливать воду и пропускать ее через себя характеризует утеплитель с точки зрения гидроизоляционных свойств и возможного его утяжеления и гниения, что негативно влияет как на сам утеплитель, так и на всю конструкцию в целом. Также анализ материала с точки зрения паропроницаемости достаточно весом при рассмотрении материала на пригодность в качестве упаковки.

Коэффициент паропроницаемости.

Коэффициент паропроницаемости — это величина, которая равна плотности стационарного потока водяного пара проходящего в изотермических условиях через слой материала толщиной в один метр в единицу времени при разности парциального давления в 1 Pascal обозначается µ(мю) мг/(м*час*Па)

При выборе строительных материалов по параметрам паропроницаемости лучше пользоваться международными нормами ISO, они получены экспериментальным путем и достоверно проверены в различных условиях эксплуатации. В зависимости от толщины материала деленной его коэффициент паропроницаемости получают сопротивляемость слоя измеряемое (м 2 *час*Па)/мг. Исходя из коэффициента паропроницаемости и толщины слоя, заявленной техническими условиями объекта, также можно определить необходимый материал, выбрав его из таблицы паропроницаемости материалов.

Паропроницаемость материалов.

Паропроницаемость материалов – это способность конкретно взятого материала, взаимодействовать с газообразным паром и пропускать его сквозь себя.

Учитывая направление потока влаги, необходимо в конструкцию здания закладывать материалы таким образом, чтобы паропроницаемость нарастала от теплой стороны к холодной. Рекомендуемая разница паропроницаемости слоев материала, от теплого к холодному, составляет в районе 4-6 паропроницаемостей «теплой» стенки. При таком расположении материалов, конструкция будет функционировать правильно, что существенно увеличивает амортизационные качества и как следствие срок эксплуатации. В практическом применении, эта конструкционная особенность выглядит следующим образом — чем ближе к источнику тепла сегмент конструкции, тем более низкой паропроницаемостью он должен обладать, а теоретические коэффициенты на практике отображаются в разнице двух крайних слоев, промежуточные же слои, должны обеспечивать плавный переход величины коэффициента паропроницаемости материала от одной стенки к другой.

Паропроницаемость пленок.

Паропроницаемость пленок — это пропускная способность 1м 2 пленки, исчисляемая в количестве воды, в виде пара, пропускаемой им за сутки.

Все существующие пленки паропроницаемы, но значение коэффициента парапроницаемости пленок определяет их принадлежность к той или иной группе:

  • пароизоляционные пленки – к ним относятся такие материалы 1м 2 которых за сутки посредством диффузии пропускает сквозь себя не более нескольких десятков грамм воды, зачастую это полипропиленовые пленки, либо пленки из привитых блок-сополимеров.
  • паропроницаемые пленки – эта категория пленок имеет суточную норму диффузии, исчисляемую сотнями, а порой и тысячами грамм воды в сутки. Привычным примером является полиэтиленовые пленки, в промышленных же целях, при необходимости высокой парпроницаемости используют специальные полимерные пленки с привитыми сополимерами в высокой концентрации.

Паропроницаемость пленки сильно меняется от изменения окружающей температуры, при повышении температуры ее свойства увеличиваются в разы. Надо отметить, что газопроницаемость пленок относительно мала и увеличивается при очень высокой влажности,

Из этого следует, что та же пленка в различных условиях покажет разные параметры паропроницаемости. Как пример при температуре 21°C и влажности 50% показания паропроницаемости пленки 1600г/м 2 /24час, при t 36°C и влажности 85%, та же пленка, покажет паропроницаемость 2800г/м 2 /24час.

Итог: паропроницаемость важный аспект, в планировании на стадии проекта. Не смотря на скептическое отношение некоторых экспертов строительной промышленности, знание и правильный учет данного коэффициента убережет строение от быстрого износа, и сохранит отдельные элементы в целости, а правильно подобранный паро-/гидро-материал, точно справится с возложенной на него функцией.

Паропроницаемость материалов

Чтобы создать благоприятный микроклимат в помещении, необходимо учитывать свойства строительных материалов. Сегодня мы разберем одно свойство – паропроницаемость материалов.

Паропроницаемостью называется способность материала пропускать пары, содержащиеся в воздухе. Пары воды проникают в материал за счет давления.

Помогут разобраться в вопросе таблицы, которые охватывают практически все материалы, использующиеся для строительства. Изучив данный материал, вы будете знать, как построить теплое и надежное жилище.

Оборудование

Если речь идет о проф. строительстве, то в нем используется специально оборудование для определения паропроницаемости. Таким образом и появилась таблица, которая находится в этой статье.

Сегодня используется следующее оборудование:

  • Весы с минимальной погрешностью – модель аналитического типа.
  • Сосуды или чаши для проведения опытов.
  • Инструменты с высоким уровнем точности для определения толщины слоев строительных материалов.

Разбираемся со свойством

Бытует мнение, что «дышащие стены» полезны для дома и его обитателей. Но все строители задумывают об этом понятии. «Дышащим» называется тот материал, который помимо воздуха пропускает и пар – это и есть водопроницаемость строительных материалов. Высоким показателем паропроницаемости обладают пенобетон, керамзит дерево. Стены из кирпича или бетона тоже обладают этим свойством, но показатель гораздо меньше, чем у керамзита или древесных материалов.

На этом графике показано сопротивление проницаемости. Кирпичная стена практически не пропускает и не впускает влагу.

Во время принятия горячего душа или готовки выделяется пар. Из-за этого в доме создается повышенная влажность – исправить положение может вытяжка. Узнать, что пары никуда не уходят можно по конденсату на трубах, а иногда и на окнах. Некоторые строители считают, что если дом построен из кирпича или бетона, то в доме «тяжело» дышится.

На деле же ситуация обстоит лучше – в современном жилище около 95% пара уходит через форточку и вытяжку. И если стены сделаны из «дышащих» строительных материалов, то 5% пара уходят через них. Так что жители домов из бетона или кирпича не особо страдают от этого параметра. Также стены, независимо от материала, не будут пропускать влагу из-за виниловых обоев. Есть у «дышащих» стен и существенный недостаток – в ветреную погоду из жилища уходит тепло.

Таблица поможет вам сравнить материалы и узнать их показатель паропроницаемости:

Чем выше показатель паронипроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость. Если вы собираетесь построить стены из пенобетона или газоблока, то вам стоит знать, что производители часто хитрят в описании, где указана паропроницаемость. Свойство указано для сухого материала – в таком состоянии он действительно имеет высокую теплопроводность, но если газоблок намокнет, то показатель увеличится в 5 раз. Но нас интересует другой параметр: жидкость имеет свойство расширяться при замерзании, как результат – стены разрушаются.

Паропроницаемость в многослойной конструкции

Последовательность слоев и тип утеплителя – вот что в первую очередь влияет на паропроницаемость. На схеме ниже вы можете увидеть, что если материал-утеплитель расположен с фасадной стороны, то показатель давление на насыщенность влаги ниже.

Рисунок подробно демонстрирует действие давления и проникновение пара в материал.

Если утеплитель будет находиться с внутренней стороны дома, то между несущей конструкцией и этим строительным будет появляться конденсат. Он отрицательно влияет на весь микроклимат в доме, при этом разрушение строительных материалов происходит заметно быстрее.

Разбираемся с коэффициентом

Коэффициент в этом показатели определяет количество паров, измеряемых в граммах, которые проходят через материалы толщиной 1 метр и слоем в 1м² в течение одного часа. Способность пропускать или задерживать влагу характеризирует сопротивление паропроницаемости, которое в таблице обозначается симвломом «µ».

Простыми словами, коэффициент – это сопротивление строительных материалов, сравнимое с папопроницаемостью воздуха. Разберем простой пример, минеральная вата имеет следующий коэффициент паропроницаемости: µ=1. Это означает, что материал пропускает влагу не хуже воздуха. А если взять газобетон, то у него µ будет равняться 10, то есть его паропроводимость в десять раз хуже, чем у воздуха.

Особенности

С одной стороны паропроницаемость хорошо влияет на микроклимат, а с другой – разрушает материалы, из которых построен дома. К примеру, «вата» отлично пропускает влагу, но в итоге из-за избытка пара на окнах и трубах с холодной водой может образоваться конденсат, о чем говорит и таблица. Из-за этого теряет свои качества утеплитель. Профессионалы рекомендуют устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.

Сопротивления паропроницанию

Если материал имеет низкий показатель паропроницаемости, то это только плюс, ведь хозяевам не приходится тратиться на изоляционные слои. А избавиться от пара, образовывающегося от готовки и горячей воды, помогут вытяжка и форточка – этого хватит, чтобы поддерживать нормальный микроклимат в доме. В случае, когда дом строится из дерева, не получается обойтись без дополнительной изоляции, при этом для древесных материалов необходим специальный лак.

Таблица, график и схема помогут вам понять принцип действия этого свойства, после чего вы уже сможете определиться с выбором подходящего материала. Также не стоит забывать и про климатические условия за окном, ведь если вы живете в зоне с повышенной влажностью, то про материалы с высоким показателем паропроницаемости стоит вообще забыть.

Паропроницаемость стен и материалов

Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.

Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.

Что такое паропроницаемость

Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.

Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).

Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.

Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.

Какая паропроницаемость у строительных материалов

Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).
Битум 0,008
Тяжелый бетон 0,03
Автоклавный газобетон 0,12
Керамзитобетон 0,075 — 0,09
Шлакобетон 0,075 — 0,14
Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе)
Известковый раствор 0,12
Гипсокартон, гипс 0,075
Цементно-песчаная штукатурка 0,09
Известняк (в зависимости от плотности) 0,06 — 0,11
Металлы 0
ДСП 0,12 0,24
Линолеум 0,002
Пенопласт 0,05-0,23
Полиурентан твердый, полиуретановая пена
0,05
Минеральная вата 0,3-0,6
Пеностекло 0,02 -0,03
Вермикулит 0,23 — 0,3
Керамзит 0,21-0,26
Дерево поперек волокон 0,06
Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11

Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.

Как конструировать утепление — по пароизоляционным качествам

Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.

Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.

Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.

Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.

Разделение слоев пароизолятором

Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.

Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?

Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.

Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.

Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.

Международная классификация пароизоляционных качеств материалов

Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.

Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.

Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.

Коэффициент сопротивляемости движению пара

Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).
Воздух 1, 1
Битум 50 000, 50 000
Пластики, резина, силикон — >5 000, >5 000
Тяжелый бетон 130, 80
Бетон средней плотности 100, 60
Полистирол бетон 120, 60
Автоклавный газобетон 10, 6
Легкий бетон 15, 10
Искусственный камень 150, 120
Керамзитобетон 6-8, 4
Шлакобетон 30, 20
Обожженная глина (кирпич) 16, 10
Известковый раствор 20, 10
Гипсокартон, гипс 10, 4
Гипсовая штукатурка 10, 6
Цементно-песчаная штукатурка 10, 6
Глина, песок, гравий 50, 50
Песчаник 40, 30
Известняк (в зависимости от плотности) 30-250, 20-200
Керамическая плитка ?, ?
Металлы ?, ?
OSB-2 (DIN 52612) 50, 30
OSB-3 (DIN 52612) 107, 64
OSB-4 (DIN 52612) 300, 135
ДСП 50, 10-20
Линолеум 1000, 800
Подложка под ламинат пластик 10 000, 10 000
Подложка под ламинат пробка 20, 10
Пенопласт 60, 60
ЭППС 150, 150
Полиурентан твердый, полиуретановая пена 50, 50
Минеральная вата 1, 1
Пеностекло ?, ?
Перлитовые панели 5, 5
Перлит 2, 2
Вермикулит 3, 2
Эковата 2, 2
Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50

Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.

Откуда возникла легенда о дышащей стене

Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.

Действительно, это «дышащий» утеплитель. Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!

Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.

А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.

Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.

Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.

Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.

Коэффициенты паропроницаемости строительных материалов

Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.

Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.

Что такое паропроницаемость

Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.

Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).

Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.

Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.

Какая паропроницаемость у строительных материалов

Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).
Битум 0,008
Тяжелый бетон 0,03
Автоклавный газобетон 0,12
Керамзитобетон 0,075 — 0,09
Шлакобетон 0,075 — 0,14
Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе)
Известковый раствор 0,12
Гипсокартон, гипс 0,075
Цементно-песчаная штукатурка 0,09
Известняк (в зависимости от плотности) 0,06 — 0,11
Металлы 0
ДСП 0,12 0,24
Линолеум 0,002
Пенопласт 0,05-0,23
Полиурентан твердый, полиуретановая пена
0,05
Минеральная вата 0,3-0,6
Пеностекло 0,02 -0,03
Вермикулит 0,23 — 0,3
Керамзит 0,21-0,26
Дерево поперек волокон 0,06
Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11

Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.

Как конструировать утепление — по пароизоляционным качествам

Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.

Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.

Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.

Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.

Разделение слоев пароизолятором

Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.

Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?

Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.

Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.

Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.

Международная классификация пароизоляционных качеств материалов

Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.

Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.

Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.

Коэффициент сопротивляемости движению пара

Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).
Воздух 1, 1
Битум 50 000, 50 000
Пластики, резина, силикон — >5 000, >5 000
Тяжелый бетон 130, 80
Бетон средней плотности 100, 60
Полистирол бетон 120, 60
Автоклавный газобетон 10, 6
Легкий бетон 15, 10
Искусственный камень 150, 120
Керамзитобетон 6-8, 4
Шлакобетон 30, 20
Обожженная глина (кирпич) 16, 10
Известковый раствор 20, 10
Гипсокартон, гипс 10, 4
Гипсовая штукатурка 10, 6
Цементно-песчаная штукатурка 10, 6
Глина, песок, гравий 50, 50
Песчаник 40, 30
Известняк (в зависимости от плотности) 30-250, 20-200
Керамическая плитка ?, ?
Металлы ?, ?
OSB-2 (DIN 52612) 50, 30
OSB-3 (DIN 52612) 107, 64
OSB-4 (DIN 52612) 300, 135
ДСП 50, 10-20
Линолеум 1000, 800
Подложка под ламинат пластик 10 000, 10 000
Подложка под ламинат пробка 20, 10
Пенопласт 60, 60
ЭППС 150, 150
Полиурентан твердый, полиуретановая пена 50, 50
Минеральная вата 1, 1
Пеностекло ?, ?
Перлитовые панели 5, 5
Перлит 2, 2
Вермикулит 3, 2
Эковата 2, 2
Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50

Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.

Откуда возникла легенда о дышащей стене

Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.

Действительно, это «дышащий» утеплитель. Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!

Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.

А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.

Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.

Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.

Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.

МАТЕРИАЛЫ И ИЗДЕЛИЯ СТРОИТЕЛЬНЫЕ

Методы определения паропроницаемости и сопротивления паропроницанию

Building materials and products. Methods for determination of water vapour permeability and steam-tightness

Дата введения 2014-01-01

Цели, основные принципы и основной порядок работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

1 РАЗРАБОТАН федеральным государственным бюджетным учреждением «Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук» («НИИСФ РААСН»)

2 ВНЕСЕН Техническим комитетом ТК 465 «Строительство»

3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и оценке соответствия в строительстве (МНТКС) (приложение Е к протоколу от 18 декабря 2012 г. N 41)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа государственного управления строительством

Министерство строительства и регионального развития

Министерство регионального развития

Агентство по строительству и архитектуре при Правительстве

4 В настоящем стандарте учтены требования международного стандарта ISO 12572:2001* Hydrothermal performance of building materials and products – Determination of water vapour transmission properties (Тепловлажностные свойства строительных материалов и изделий. Определение характеристик паропроницаемости) в части условий проведения испытаний.
________________
* Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить, перейдя по ссылке на сайт http://shop.cntd.ru. – Примечание изготовителя базы данных.

Перевод с английского языка (en).

Степень соответствия – неэквивалентная (NEQ)

5 Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2012 г. N 2013-ст межгосударственный стандарт ГОСТ 25898-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2014 г.

6 ВЗАМЕН ГОСТ 25898-83

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты», а текст изменений и поправок – в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования – на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

1 Область применения

Настоящий стандарт распространяется на строительные материалы и изделия, включая тонкослойные покрытия, листы и пленки, и устанавливает методы определения паропроницаемости строительных материалов и изделий и сопротивления паропроницанию тонкослойных покрытий, листовых и пленочных материалов.

Результаты испытаний применяют при теплотехнических расчетах, для производственного контроля качества строительных материалов и изделий и при разработке нормативных документов на материалы и изделия конкретных видов.

2 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

2.1 плотность потока водяного пара: Масса потока водяного пара, проходящего через единицу площади рабочей поверхности образца за единицу времени.

Примечание – Рабочая поверхность образца – поверхность, через которую проходит поток водяного пара.

2.2 однородный материал: Материал, плотность которого одинаковая по всему объему.

2.3 паропроницаемость: Величина, численно равная количеству водяного пара в миллиграммах, проходящего за 1 ч через слой материала площадью 1 м и толщиной 1 м при условии, что температура воздуха у противоположных сторон слоя одинаковая, а разность парциальных давлений водяного пара равна 1 Па.

2.4 сопротивление паропроницанию: Показатель, характеризующий разность парциальных давлений водяного пара в паскалях у противоположных сторон изделия с плоскопараллельными сторонами, при которой через изделие площадью 1 м за 1 ч проходит 1 мг водяного пара при равенстве температуры воздуха у противоположных сторон изделия; величина, численно равная отношению толщины слоя испытуемого материала к значению паропроницаемости.

2.6 сравнительный коэффициент паропроницаемости: Отношение значения коэффициента паропроницаемости воздуха к значению коэффициента паропроницаемости испытуемого материала.

Примечание – Сравнительный коэффициент паропроницаемости показывает, на сколько при одинаковой температуре сопротивление паропроницанию слоя материала больше сопротивления паропроницанию слоя неподвижного воздуха такой же толщины; определяют, как показано в приложении А.

3 Общие положения

3.1 Сущность методов определения сопротивления паропроницанию и паропроницаемости заключается в создании стационарного потока водяного пара через исследуемый образец и определении интенсивности этого потока.

В настоящем стандарте приведены методы «мокрой чашки» и «сухой чашки». Метод «мокрой чашки» является основным. Метод «сухой чашки» является дополнительным при определении характеристик материалов и изделий, применяемых в сухом режиме эксплуатации.

3.2 Если изделия применяют в специальных условиях, то при проведении испытаний значения температуры и относительной влажности воздуха могут быть согласованы между изготовителем и потребителем.

По требованию потребителя определение паропроницаемости материалов и изделий или сопротивления паропроницанию тонкослойных покрытий, пленок и др. может быть проведено методом «сухой чашки», при этом в сосуде под образцом должен находиться влагопоглотитель.

3.3 Сопротивление паропроницанию определяют для листовых и пленочных строительных материалов толщиной менее 10 мм, а также для тонкослойных покрытий (тонкие штукатурные слои систем наружного утепления; кровельные рулонные материалы; лакокрасочные, пароизоляционные покрытия и т.п.). Для остальных материалов определяют паропроницаемость.

3.4 При испытании для герметизации зон прилегания образцов к верхним кромкам испытательных сосудов применяют паронепроницаемые герметики, не изменяющие во время испытания своих физических и химических свойств и не вызывающие изменения физических и химических свойств материала испытуемого образца.

3.5 Обозначения и единицы измерения

Обозначения и единицы измерения основных параметров определения характеристик паропроницаемости, применяемые в настоящем стандарте, приведены в таблице 1.

Таблица 1 – Обозначения и единицы измерения

Сопротивление паропроницанию образцов

Масса испытательного сосуда с образцом

Интервал времени между двумя последовательными взвешиваниями

Относительная влажность воздуха

Площадь поверхности образца, через которую проходит поток водяного пара (площадь рабочей поверхности образца)

Давление насыщенного водяного пара

Давление водяного пара

Интенсивность потока водяного пара, проходящего через образец за 1 ч

Сопротивление паропроницанию воздуха

Коэффициент паропроницаемости материала

Средняя толщина испытуемого образца

Плотность потока водяного пара через образец

Примечание – В приложении Б приведена таблица перевода единиц измерения при определении характеристик паропроницаемости.

3.6 Методы, приведенные в настоящем стандарте, обеспечивают определение характеристик паропроницаемости с относительной ошибкой, не превышающей 10%.

4 Испытательное оборудование

5 Образцы для испытаний

5.1 Изготовление образцов

5.1.1 Образцы должны быть типовыми представителями изделий, из которых вырезают эти образцы.

5.1.2 Пленки, образованные в процессе производства изделия, или покрытия, приклеенные на изделия, при определении паропроницаемости удаляют с образцов.

5.1.3 При изготовлении образцов не допускаются повреждения поверхностей, которые могут вызвать изменение количества или направления потока водяного пара.

5.1.4 Площадь рабочей поверхности образцов должна быть не менее 90% площади открытой поверхности испытательного сосуда.

5.2 Размеры и форма образцов

5.2.1 Для испытаний подготавливают образцы квадратного сечения со стороной размером 100 мм или цилиндрического сечения диаметром 100 мм.

5.2.2 При испытании неоднородных материалов допускается изготовлять образцы диаметром (для круглых образцов) или длиной сторон (для квадратных образцов), превышающих толщину не менее чем в три раза.

5.2.3 Отклонение от плоскостности верхней и нижней поверхностей образцов допускается не более 10% среднего значения толщины образца.

5.3 Толщина образцов

5.3.1 Для материалов, изделия из которых имеют толщину 10-30 мм, толщина образцов должна соответствовать толщине изделия. Из материалов, изделия из которых имеют толщину более 30 мм, изготовляют образцы толщиной 30 мм. Толщина образцов из неоднородных материалов (бетон и т.п.) должна превышать размер максимального зерна в 3-5 раз.

5.3.2 Толщину образцов измеряют три раза, поворачивая образец вокруг оси симметрии на 60°. Толщиной образца считают среднеарифметическое значение результатов трех измерений. Для образцов сжимаемых, сыпучих материалов и образцов неправильной формы применяемый метод измерения толщины указывают в протоколе испытаний.

5.4 Число образцов

Если площадь рабочей поверхности образца меньше 0,02 м , испытывают не менее пяти образцов. В других случаях испытывают не менее трех образцов.

5.5 Кондиционирование образцов

Образцы перед испытанием выдерживают при температуре (23±5) °С и относительной влажности воздуха (50±5)% до достижения постоянной массы, когда результаты взвешивания в течение трех последующих дней отличаются не более чем на 5%.

6 Проведение испытаний

6.1 Подготовленные образцы устанавливают в верхней части испытательного сосуда. Зазоры между боковыми гранями образца и стенками сосуда тщательно герметизируют и проводят первое (контрольное) взвешивание сосуда с образцом. При необходимости для фиксации тонкослойных образцов используют удерживающие шаблоны. Схемы испытательных сосудов с образцами представлены в приложении В.

6.2 Образцы устанавливают в испытательный сосуд так, чтобы направление потока водяного пара соответствовало предполагаемому потоку водяного пара при эксплуатации изделия. Если направление потока водяного пара неизвестно, изготовляют два идентичных образца и измерения проводят при разных направлениях потока водяного пара.

6.4 При проведении испытаний по методу «мокрой чашки» испытательные сосуды с образцами взвешивают на аналитических весах через определенные промежутки времени, но не реже чем через 7 сут. В момент взвешивания фиксируют значения температуры и относительной влажности воздуха. Результаты измерений заносят в протокол испытаний. Форма протокола испытаний приведена в приложении Г.

6.5 При проведении испытаний по методу «сухой чашки» первое после контрольного (см. 6.1) взвешивание испытательного сосуда с образцом проводят через 1 ч, следующие – через 2, 4, 12 и далее через каждые 24 ч (ежедневно).

6.6 Испытания считают законченными после установления стационарного потока водяного пара через образец, когда плотность потока в течение нескольких последовательных взвешиваний колеблется не более чем на 5% среднего значения.

6.7 Испытания по методу «сухой чашки» прекращают досрочно, если при испытании масса сосуда с образцом увеличилась более чем на 1,5 г на каждые 25 мл находящегося в чашке влагопоглотителя.

6.8 Сопротивление паропроницанию лакокрасочных покрытий определяют на шести образцах, три из которых являются основой и три – основой с нанесенным слоем лакокрасочного покрытия. В качестве основы подготавливают образцы из материала, на который в реальном изделии наносят лакокрасочное покрытие.

В протокол испытания (см. приложение Г) заносят информацию о способе нанесения лакокрасочного покрытия, числе слоев и другие данные, необходимые для идентификации покрытия. Одновременно с испытанием лакокрасочного покрытия, нанесенного на основу, определяют характеристики паропроницаемости основы. Сопротивление паропроницанию лакокрасочного покрытия, нанесенного на основу, определяют как разность между сопротивлением паропроницанию основы с покрытием и сопротивлением паропроницанию основы.

6.9 Сопротивление паропроницанию защитного, клеевого и декоративного слоев систем наружной теплоизоляции с толщиной слоев менее 5 мм допускается определять по 6.8. В качестве основы используют минераловатные плиты, соответствующие проектной документации на систему наружной теплоизоляции. Размеры образцов должны соответствовать приведенным в 5.2.2.

7 Обработка результатов испытаний

7.1 Для расчета сопротивления паропроницанию используют полученные значения плотности потока водяного пара через образец, значения упругостей водяного пара в воздухе камеры и в испытательном сосуде под образцом (давление насыщенного водяного пара и давление водяного пара в камере вокруг испытательного сосуда). Значения парциального давления насыщенного водяного пара приведены в приложении Д.

Результаты испытаний заносят в протокол испытаний (см. приложение Г).

где – изменение массы испытательного сосуда с образцом за интервал времени , мг;

– интервал времени между двумя последовательными взвешиваниями, ч;

– площадь рабочей поверхности образца, через которую проходит поток водяного пара, м .

где – давление насыщенного водяного пара в испытательном сосуде, Па; определяют по приложению Д;

– давление водяного пара в камере вокруг сосуда, Па;

– сопротивление паропроницанию воздуха, (м ·ч·Па)/мг, определяемое по формуле

где – толщина слоя воздуха (расстояние от поверхности воды в испытательном сосуде до нижней поверхности образца), м;

– паропроницаемость воздуха в испытательном сосуде, мг/(м·ч·Па), определяют по приложению А.

Давление водяного пара в камере вокруг испытательного сосуда определяют по формуле

где – относительная влажность воздуха в камере вокруг испытательного сосуда с образцом, %.

где – средняя толщина испытуемого образца, м.

Приложение А (справочное). Определение сравнительного коэффициента паропроницаемости

При определении сравнительного коэффициента паропроницемости применяют обозначения и единицы измерения параметров, приведенные в таблице А.1.

Таблица А.1 – Обозначения и единицы измерения параметров

Газовая постоянная для водяного пара, равная 462

Среднее давление воздуха

Нормальное атмосферное давление

Температура воздуха в испытательной камере

Паропроницаемость слоя неподвижного воздуха

Сравнительный коэффициент паропроницаемости

или определяют графически по графику зависимости коэффициента паропроницаемости воздуха от давления при температуре 23 °С (см. рисунок А.1).

Рисунок А.1 – График зависимости коэффициента паропроницаемости воздуха от давления при температуре 23 °С

Рисунок А.1 – График зависимости коэффициента паропроницаемости воздуха от давления при температуре 23 °С

Давление воздуха при испытании определяют барометром.

Толщину слоя неподвижного воздуха , имеющего сопротивление паропроницанию, эквивалентное сопротивлению паропроницанию испытуемого образца материала толщиной , определяют по формуле

Паропроницаемость строительных материалов по отечественным строительным нормам и международным стандартам.

Паропроницаемость строительного материала – это способность слоя материала пропускать водяной пар в результате разности парциального давления водяного пара при одинаковом атмосферном давлении на обеих сторонах слоя строительного материала. Эта способность задерживать или пропускать водяной пар характеризуется величиной коэффициента паропроницаемости или сопротивления паропроницаемости: µ

Значение µ («мю») коэффициента паропроницаемости строительного материала является относительным значением сопротивления материала паропереносу по сравнению со свойствами сопротивления паропереносу воздуха. Например, значение µ = 1 для минеральной ваты означает, что она проводит водяной пар точно также хорошо, как и воздух. А значение µ = 10 для газобетона означает, что этот строительный материал проводит пар в 10 раз хуже воздуха. Значение µ умноженное на толщину в метрах дает эквивалентную по паропроницаемости толщину воздуха Sd (м).

В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2• ч • Па/мг) нормируется в главе 6 «Сопротивление паропроницанию ограждающих конструкций» СНиП II-3-79 (1998) «Строительная теплотехника».

Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) – 2007 год.

Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 «Теплотехнические свойства строительных материалов и изделий – Определение паропроницаемости». Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.
В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю.
Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO, котрые определяют паропроницаемость «сухих» строительных материалов при влажности менее 70% и «влажных» строительных материалов при влажности более 70%. Помните, что при оставлении «пирогов» паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет «замокание» внутренних слоев строительных материалов и значительно увеличится их теплопроводность.

Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться: СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8: Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои. По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ. – м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.

Механизм паропроницаемости строительных материалов:

При низкой относительной влажности влага из атмосферы транспортируется через поры строительных материалов в виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).

Показатели паропроницаемости «сухих» строительных материалов по ISO/FDIS 10456:2007(E) применимы для внутренних конструкций отапливаемых зданий. Показатели паропроницаемости «влажных» строительных материалов применимы для всех наружных конструкций и внутрених конструкций неотапливаемых зданий или дачных домов с переменным (временным) режимом отопления.

Для удобства сравнения паропроницаемости строительных материалов мы приводим сводную таблицу с данными по международным ISO/FDIS 10456:2007(E) и отечественным нормам СНиП II-3-79 (1998) (Приложение 3. Теплотехнические показатели строительных материалов и конструкций). Как вы увидете – расчетные данные в наших нормах не всегда сопадают с данными международных стандартов, полученных лабораторными испытаниями. Например, в отечественных СНиП паропроницаемость керамзитобетона и шлакобетона практически не отличается, по международным стандартам она отличается в 5 раз. В отечественых нормах паропроницаемость гипсокартона и шлакобетона почти одинакова, а в международных стандартах она отличается в 2-3 раза. Пеностекло по международным стандартам абсолютно паронепроницаемо, по нашим нормам – оно всего лишь в три раза менее паропроницаемо, чем цементная штукатурка и т.д. и т.п.

Полезной информацией для строителей могут оказаться данные по сравнительной паропроницаемости строительных материалов в U.S. perm единицах. Посмотрите статью о спсообах избавления от высокой влажности в доме.

Строительные материалы / материалы

коэффициент сопротивления паропроницаемости(µ)

коэффициент сопротивления паропроницаемости(µ)

Расчетный коэффициент паропроницаемости
(m, м2• ч • Па/мг)

сухое состояние
вл. 70%
для неотапливаемых зданий и всех наружных конструкций

базовые значения для дальнейших расчетов с учетом реальной влажности

Блок керамический КЕТРА по оптовым ценам в Нижнем Новгороде от ФИНКО









Изображение и цена

Применение

Характеристики

Кетра Блок 51/ 14.3 НФ

Цена:  руб/шт   — 130,10

         руб/м3    — 4683,60

«КЕТРА Блок 51» предназначен для возведения наружих несущих стен здания без дополнительного утепления. Кладка на теплый раствор из этих блоков является самым быстрым и экономичным вариантом строительства из эффективных блоков на сегодняшний день. При кладке достигается оптимальное соотношение затрат и теплоэффективности.

Размеры,мм- 510х250х219
Масса, кг          —      ок. 22
Марка прочности -М75-125    Расход, шт/м²    —        17.3
Расход раствора, л/м2  -50
Морозостойкость        -F50
Водопоглощение 19%(+-2) Коэффициент теплопроводности λ, Вт/(м*С))  от 0,143
Коэффициент паропроницаемости μ, мг/(м*ч*Па) 0,14

Кетра Блок 44/ 12.4 НФ

Цена:   руб/шт  — 115,30

         руб/м— 4612

Керамические блоки КЕТРА  Блок 44 используют для кладки наружних стен без дополнительного утепления. КЕТРА Блок 44 с облицовкой керамическим кирпичом или плиткой — прекрасный выбор для малоэтажногостроительства.        Используйте доборный элемент «КЕТРА Блок 44 1/2» для кладки оконных и дверных проемов, а так же  теплый кладочный раствор для качественного сцепления и уменшения расхода смеси.

Размеры, мм    440х250х219 Масса, кг     ок. 17                      Марка прочности     М75-125   Расход, шт/м²     17.3                 Расход раствора, л/м2     37 Морозостойкость     F50 Водопоглощение     17%+-2 Коэффициент теплопроводности λ,  Вт/(м*С))     от 0,145        Коэффициент паропроницаемости μ, мг/(м*ч*Па)    0,14

Кетра Блок 38/ 10,7 НФ               Цена: руб/шт— 99,50                                       руб/м3— 4776

Керамоблоки КЕТРА Бок 38 также предназначены для кладки несущих наружних стен. При укладке угла из КЕТРА Бок 38 доборные элементы не требуются. Обращаем ваше внимание, что вертикальный шов, образующийся в месте соединения гладкой поверхности блока с пазогребневой стороной другого блока, нужно заполнить тёплым кладочным раствором во избежании образования щелей или мостика холода.

Размеры, мм    380х250х219 Масса, кг     ок. 17                  Марка прочности     М75-125 Расход, шт/м²     17.3           Расход раствора, л/м2     37 Морозостойкость     F50 Водопоглощение     17%+-2 Коэффициент теплопроводности λ,  Вт/(м*С))     от 0,145        Коэффициент паропроницаемости μ, мг/(м*ч*Па)    0,14

Кетра Блок 25/ 11,2 НФ               Цена: руб/шт— 100,80                                    руб/м3— 4304,16

  Возведение несущих наружных стен с дополнительным утеплением и несущих внутренних стен.Надежные и прочные стены обеспечат защиту от холода, жары, шума и сырости.

Размеры, мм  250х398х219  Масса, кг                        17          Марка прочности       М-100    Расход, шт/м²              11,3     Расход раствора, л/м2    24  Морозостойкость           F50 Водопоглощение          19% Коэффициент теплопроводности λ,   Вт/(м*С))                   0,160    Коэффициент паропроницаемости μ, мг/(м*ч*Па)                0,14

Кетра Блок 20/ 9,0 НФ                 Цена: руб/шт— 81,00              руб/м3— 4617

Возведение несущих наружных стен с дополнительным утеплением и несущих внутренних стен.

Размеры, мм    200х380х219  Масса, кг                        17    Марка прочности       М-100 Расход, шт/м²              11,4   Расход раствора, л/м2    21 Морозостойкость           F50 Водопоглощение          19% Коэффициент теплопроводности λ, Вт/(м*С))       21               Коэффициент паропроницаемости μ, мг/(м*ч*Па)              0,14

 Кетра Блок 12/ 6,9 НФ              Цена: руб/шт— 62,10

 Возведение не несущих внутренних стен и межкомнатных перегородок.

Размеры, мм      120х510х219 Масса, кг     —              11,       Марка прочности        М100 Расход, шт/м²               8.6    Расход раствора, л/м2    13 Морозостойкость            50  Водопоглощение          14% Коэффициент теплопроводности λ, Вт/(м*С))                 0,16Коэффициент паропроницаемости μ, мг/(м*ч*Па)                 0,14

 Кетра Блок 10/ 5,7 НФ

Цена: руб/шт— 51,90

 Возведение не несущих внутренних стен и межкомнатных перегородок.

 Размеры, мм     100х510х219 Масса, кг                     10,4     Марка прочности        М100  Расход, шт/м²                8,6    Расход раствора, л/м2      8  Коэффициент теплопроводности λo, Вт/(м*С)    0,45

 Керамический поризованный камень 2,1 НФ

Цена: руб/шт— 19,00                              руб/м3— 3700

 Возведение несущих наружных стен с дополнительным утеплением и несущих внутренних стен.

Размеры, мм 250х120х140  Масса, кг               3,5            Марка прочности М100       Расход, шт/м²                 26  Расход на м³                 195  Расход раствора, л/м2   200 Морозостойкость           F50 Водопоглощение          14% Коэффициент теплопроводности λ, Вт/(м*С))     0,157           Коэффициент паропроницаемости μ, мг/(м*ч*Па)    0,14

Характеристика проницаемости и моделирование нанокомпозитов полиэтилен / глина для упаковки

  • 1.

    Коцилкова Р. (2007) Термореактивные нанокомпозиты для инженерных приложений. Smithers Rapra Tecchnology, Шобери

    Google Scholar

  • 2.

    Томас С., Стивен Р. (2010) Резиновые нанокомпозиты: получение, свойства и применение. Wiley, Сингапур

    Google Scholar

  • 3.

    Silvestre C, Duraccio D, Cimmino S (2011) Пищевая упаковка на основе полимерных наноматериалов. Prog Polym Sci 36: 1766–1782

    CAS
    Статья

    Google Scholar

  • 4.

    Suprakas SR, Masami O (2003) Полимерные / слоистые силикатные нанокомпозиты: обзор от подготовки к переработке. Prog Polym Sci 28: 1539–1641

    Статья

    Google Scholar

  • 5.

    Kiliaris P, Papaspyrides CD (2010) Полимерные / слоистые силикатные (глинистые) нанокомпозиты: обзор огнестойкости.Prog Polym Sci 35 (7): 902–958

    CAS
    Статья

    Google Scholar

  • 6.

    Zheng QH, Yu AB, Lu GQ, Paul DR (2005) Полимерные нанокомпозиты на основе глины: исследования и коммерческие разработки. J Nanosci Nanotechnol 5: 1574–1592

    Статья

    Google Scholar

  • 7.

    Pinnavaia TJ, Beall GW (2000) Нанокомпозиты из полимерной глины. Уайли, Нью-Йорк

    Google Scholar

  • 8.

    Гомес М., Палца Х., Кихада Р. (2016) Влияние органически модифицированного монтмориллонита и синтезированных наночастиц слоистого диоксида кремния на свойства полипропилена и нанокомпозитов полиамид-6. Полимеры 386 (8): 1–15

    Google Scholar

  • 9.

    Romanzini D, Piroli V, Frache A, Zattera AJ, Amico SC (2015) Монтмориллонит натрия, модифицированный метакрилокси и винилсиланами: влияние силилирования на морфологию нанокомпозитов глина / ненасыщенный полиэфир.Appl Clay Sci 114: 550–557

    CAS
    Статья

    Google Scholar

  • 10.

    Араужо Е.М., Барбоса Р., Родригес А.В.Б., Мело Т.Я., Ито EN (2007) Обработка и определение характеристик нанокомпозитов полиэтилен / бразильская глина. Mater Sci Eng, A 445–446: 141–147

    Статья

    Google Scholar

  • 11.

    Маллакпур С., Барати А. (2012) Применение модифицированного клоизита Na + с LP-фенилаланином для получения новых пленок из поли (винилового спирта) / бионанокомпозитной глины с органоглиной.Полим-Пласт Технол 51: 321–327

    CAS
    Статья

    Google Scholar

  • 12.

    Möller MW, Kunz DA, Lunkenbein T, Sommer S (2012) УФ-отверждаемое, гибкое и прозрачное нанокомпозитное покрытие с замечательным кислородным барьером. Adv Mater 24: 2142–2147

    Статья

    Google Scholar

  • 13.

    Ку Дж. (2006) Полимерные нанокомпозиты: обработка, характеристика и приложения.Макгроу-Хилл, Нью-Йорк

    Google Scholar

  • 14.

    Дачжу К., Хайян Ю., Пиншенг Х, Вейан З. (2005) Реологические и экструзионные свойства интеркалированных ударопрочных / органомонтмориллонитовых нанокомпозитов. Compos Sci Technol 65: 1593–1600

    Статья

    Google Scholar

  • 15.

    Редди С.С., Ратна Д., Дас С.К. (2008) Полиэтиленовые нанокомпозиты путем газофазной полимеризации этилена в присутствии цирконоценовой каталитической системы на основе нанокремнезема.Polym Int 57 (2): 282–291

    CAS
    Статья

    Google Scholar

  • 16.

    Gill YQ, Jin J, Song M (2015) Поведение текучести расплава нанокомпозитов полиэтилена высокой плотности с 1D, 2D и 3D нанонаполнителями. Нанокомпозиты 1 (3): 160–169

    CAS
    Статья

    Google Scholar

  • 17.

    Вильянуэва М.П., ​​Кабедо Л., Хименес Э., Лагарон Дж. М., Коутс П. Д., Келли А. Л. (2009) Исследование дисперсии наноглин в матрице ПЭНП с использованием микроскопии и ультразвукового мониторинга в процессе.Polym Test 28: 277–287

    CAS
    Статья

    Google Scholar

  • 18.

    Вильянуэва М.П., ​​Кабедо Л., Лагарон Дж. М., Гименес Э. (2010) Сравнительное исследование нанокомпозитов полиолефиновых компатибилизаторов, содержащих органоглины каолинита и монтмориллонита. J Appl Polym Sci 115: 1325–1335

    CAS
    Статья

    Google Scholar

  • 19.

    Миттал В. (2010) Барьерные свойства нанокомпозитов из полимерной глины.Nova Science Publishers Inc, Нью-Йорк

    Google Scholar

  • 20.

    Mittal V (2007) Механические и газопроницаемые свойства компатибилизированных нанокомпозитов из слоистого силиката полипропилена. J Appl Polym Sci 107 (2): 1350–1361

    Статья

    Google Scholar

  • 21.

    Bhattacharya M, Biswas S, Bhowmick AK (2011) Характеристики проницаемости и моделирование барьерных свойств многофункциональных резиновых нанокомпозитов.Полимер 52: 1562–1576

    CAS
    Статья

    Google Scholar

  • 22.

    Александр Б., Коласс Л., Ланжевен Д., Медерик П., Обри Т., Чаппи С., Марэ С. (2010) Транспортные механизмы малых молекул через нанокомпозиты полиамид 12 / монтмориллонит. J Phys Chem B 114 (27): 8827–8837

    CAS
    Статья

    Google Scholar

  • 23.

    Миттал В. (2013) Моделирование и прогноз барьерных свойств полимерных слоистых силикатных нанокомпозитов.Polym Polym Compos 21 (8): 509–518

    CAS

    Google Scholar

  • 24.

    Sun L, Boo WJ, Clearfield A, Sue H-J, Pham HQ (2008) Барьерные свойства модельных эпоксидных нанокомпозитов. J Membr Sci 318 (1-2): 129–136

    CAS
    Статья

    Google Scholar

  • 25.

    Менегетти П., Шейх С., Кутубуддин С., Назаренко С. (2008) Синтез и характеристика нанокомпозитов стирол-бутадиеновый каучук-глина с улучшенными механическими и газобарьерными свойствами.Rubb Chem Technol 81 (5): 821–841

    CAS
    Статья

    Google Scholar

  • 26.

    Mastromatteo M, Conte A, Previtali MA, Nobile MAD (2016) Упрощенный подход, основанный на полиномиальных уравнениях, для прогнозирования проницаемости микроперфорированных полимерных пленок. Packag Technol Sci 29: 549–558

    CAS
    Статья

    Google Scholar

  • Проницаемость резиновых смесей

    На проницаемость резины влияет множество факторов.Полимер и наполнители напрямую влияют на скорость переноса через резиновый барьер, что очень важно для критических газов или жидкостей. Наиболее распространенный пример переноса этого типа — проникновение воздуха через автомобильную шину. Правильный барьер внутри шины имеет решающее значение для общей производительности шины как в жаркие, так и в холодные дни.

    Для резины проницаемость — это скорость, с которой небольшие молекулы газа или жидкости проходят через резиновую смесь. Эти показатели обычно очень низкие, но они важны при проектировании ответственного уплотнения.

    Критические уплотнения включают в себя уплотнения для медицинских инструментов, которые проходят автоклавирование и не подвержены воздействию влаги для внутренних компонентов, автомобильные топливные уплотнения, которые должны соответствовать требованиям Калифорнийского совета по ресурсам (CARB) для автомобилей с низким уровнем выбросов, или вакуумные уплотнения, которые не должны терять вакуум с воздухопроницаемостью.

    Размер проницаемой молекулы влияет на скорость проницаемости. Кинетический диаметр — это наименьший эффективный диаметр данной молекулы при условии, что она имеет сферическую форму.Это не всегда коррелирует с молекулярной массой. Более высокая молекулярная масса может иметь меньший диаметр.

    Полярность молекулы и пространственные затруднения структуры являются факторами, влияющими на размер молекулы. В таблице 1 приведен кинетический диаметр обычных газов.

    Таблица 1: Общие кинетические диаметры

    Компаунды

    EPDM имеют очень низкое водопоглощение. Эти соединения хорошо защищают от водяных паров. Однако EPDM будет поглощать нефть и газ, поэтому он не является эффективным барьером в целом.

    Температура — еще один фактор, затрудняющий проницаемость. Обычно чем выше температура, тем выше скорость диффузии. Таким образом, рекомендуется убедиться, что тестирование проводится во всех рабочих диапазонах.

    Другими факторами, влияющими на проницаемость, являются концентрация проникающего вещества на барьере и давления на противоположной стороне барьера.

    Единицы измерения

    Единицы проницаемости для газа и жидкости показаны ниже:

    • P = (количество газа x толщина мембраны) / (площадь мембраны x время x давление)
    • P = (количество жидкости x толщина мембраны) / (площадь мембраны x время)

    Методы испытаний

    • ASTM D814 — Стандартный метод испытаний свойств резины — Паропроницаемость летучих жидкостей
    • ASTM D1434 — Стандартный метод испытаний для определения характеристик газопроницаемости пластиковых пленок и листов
    • ISO 2782-1 — Резина вулканизированная или термопластическая — Определение газопроницаемости — Часть 1: Методы дифференциального давления
    • ISO 2782-2 — Резина вулканизированная или термопластическая — Определение газопроницаемости — Часть 2: Метод равного давления

    Рисунок 1: Колпачок для определения проницаемости

    Рекомендации по составу каучука

    Размер частиц наполнителя .Наполнители сажи и глины имеют различный средний размер частиц. Мелкие частицы обычно обладают более высокими физическими свойствами, но могут отрицательно повлиять на обработку. Вязкость компаунда увеличивается с увеличением количества наполнителей с мелкими частицами, что может вызвать проблемы с текучестью формы. Повышение плотности наполнителя за счет высокой загрузки более мелких частиц наполнителя помогает предотвратить прохождение молекул через него.

    Наполнитель абсорбционный . Некоторые наполнители впитывают проникающий агент. Глиняные наполнители могут поглощать воду, что увеличивает проницаемость водяного пара, позволяя воде легче диффундировать через полимер.

    Полярность полимера . Различные полимеры на каучуковой основе имеют разную полярность. Полезный способ думать об этом — «нравится растворять лайки». Вот почему EPDM набухает в масле или топливе. И полимер EPDM, и масла неполярны. Полимеры NBR имеют увеличивающийся уровень полярности, что делает их непригодными для масел и топлива и уменьшая набухание. Важно соответствие полярности резиновых перегородок и полярности проникающего вещества.

    Таблица 2: ASTM D1418 Коэффициент проницаемости резины

    Приведенные выше числа основаны на стандартных условиях Con STD.Более высокие температуры обычно увеличивают скорость. Например, диапазоны NBR основаны на содержании ACN в полимере. Более высокое значение ACN дает более низкие результаты для топлива и газов из-за более высокой полярности.

    Эти числа не следует использовать в целях оценки. Фактические данные испытаний используемого соединения дадут более точные оценки.

    Цитаты:

    1. Маккин, Л. (2012). Проницаемость пластиков и эластомеров. Уолтем, Массачусетс: Elsevier Inc.
    2. Pruett, K (2005). Руководство по химической стойкости эластомеров III. Ла-Хойя, Калифорния: Compass Publications

    Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


    Настройка вашего браузера для приема файлов cookie

    Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

    • В вашем браузере отключены файлы cookie.Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
    • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.
      Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
    • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
    • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г.,
      браузер автоматически забудет файл cookie.Чтобы исправить это, установите правильное время и дату на своем компьютере.
    • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.
      Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

    Почему этому сайту требуются файлы cookie?

    Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie
    потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


    Что сохраняется в файле cookie?

    Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

    Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт
    не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к
    остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

    Покрытие с низкой проницаемостью для нитрилового каучука

    Покрытие с низкой проницаемостью для нитрилового каучука
    Военно-морской флот SBIR FY2008.1

    Sol №: Navy SBIR FY2008.1
    Номер темы: N08-042
    Название темы: Покрытие с низкой проницаемостью для нитрилового каучука
    Предложение No.: N081-042-0685
    Фирма: Systems and Materials Research Corporation
    1300 West Koenig Lane
    Люкс 230
    Остин, Техас 78756
    Контактный телефон: Алан Брей
    Телефон: (512) 535-7791
    Веб-сайт: systemsandmaterials.com
    Реферат: Исследователи годами безуспешно пытались создать эластомеры с низкой скоростью пропускания водяного пара (СПВП).Разработка покрытий с низким WVTR для нитриловых покрытий пролетающих ракет «Томагавк» требует прорывной технологии в барьерных материалах. Предлагается нанокомпозитный эластомер, в котором используются эффекты извилистого пути и ограниченного полимера (TP / CP), которые возникают при использовании глин с высоким коэффициентом формы, таких как вермикулит. Образуется структура, подобная «кирпичной стене», которая сопротивляется проникновению водяного пара. Улучшение проницаемости в 100-500 раз по сравнению с чистым полимером возможно с хорошо сформированными нанокомпозитами.В результате получается барьерный материал, такой же непроницаемый, как любой известный полимер, но при этом эластомерный. Возможные комбинации смолы и глины сформируют нанокомпозитные покрытия, которые будут проверены на WVTR и эластичные свойства. WVTR проектируются в диапазоне 10e-3 г / 100 дюйм-экв-2 / день / мил, что — на основе модели относительной влажности ракетных стволов из ROM — достаточно для 33-летнего срока службы барьера. Физические свойства будут проверяться для каждой комбинации барьер / покрытие до и после воздействия ускоренного старения. В Варианте Фазы I OEM-компания, производящая ламинирование эластомеров, поможет разработать производственную стратегию и произвести предварительные прототипы двухслойных ламинатов с сквозным покрытием для контрольных испытаний.Затраты на сырье и переработку низкие, что позволяет снизить стоимость деталей как минимум на 40%.
    Льготы: Эластомер используется во флоте повсеместно — в военно-морских системах существуют буквально сотни инкапсулированных в эластомер деталей, и многие из них работали бы лучше, если бы были более непроницаемыми для водяного пара. Примеры включают надувные плоты, сапоги для подводных акустических преобразователей, купола гидролокатора и буксируемые группы. Коммерческие перспективы столь же радужны — распыляемые непроницаемые эластомерные покрытия могут стать огромным рынком для бытовых и коммерческих пароизоляционных материалов.Поскольку сырьем являются товарные эластомеры и глина — оба продукта очень недорогие (например, глины для этого применения будут стоить менее 25 центов за фунт ПОСЛЕ обработки). Оборудование для обработки би-ламината уже имеется у сотен производителей оригинального оборудования, и стоимость конечного продукта будет намного меньше на квадратный фут, чем у любых доступных и сопоставимых непроницаемых материалов. Рынок непроницаемых эластомеров может вырасти до сотен тысяч фунтов в первые несколько лет после внедрения, что приведет к пропорциональному снижению затрат для военно-морского флота и гражданских пользователей.

    Возврат

    % PDF-1.3
    %
    1021 0 объект
    >
    эндобдж

    xref
    1021 111
    0000000016 00000 н.
    0000003897 00000 н.
    0000004001 00000 п.
    0000004038 00000 н.
    0000004464 00000 н.
    0000004586 00000 н.
    0000004706 00000 н.
    0000004826 00000 н.
    0000004948 00000 н.
    0000005070 00000 н.
    0000005192 00000 н.
    0000005314 00000 н.
    0000005436 00000 н.
    0000005558 00000 н.
    0000005680 00000 н.
    0000005801 00000 п.
    0000005921 00000 н.
    0000006064 00000 н.
    0000006256 00000 н.
    0000006418 00000 н.
    0000007003 00000 н.
    0000007447 00000 н.
    0000007661 00000 н.
    0000007741 00000 н.
    0000008257 00000 н.
    0000008487 00000 н.
    0000008790 00000 н.
    0000009520 00000 н.
    0000009918 00000 н.
    0000010370 00000 п.
    0000010542 00000 п.
    0000010718 00000 п.
    0000011174 00000 п.
    0000011396 00000 п.
    0000011586 00000 п.
    0000012036 00000 п.
    0000013302 00000 п.
    0000013388 00000 п.
    0000013915 00000 п.
    0000013994 00000 п.
    0000014299 00000 п.
    0000014675 00000 п.
    0000015080 00000 п.
    0000015398 00000 п.
    0000017757 00000 п.
    0000017933 00000 п.
    0000018324 00000 п.
    0000018612 00000 п.
    0000019068 00000 п.
    0000019130 00000 п.
    0000019386 00000 п.
    0000019586 00000 п.
    0000019764 00000 п.
    0000019824 00000 п.
    0000020305 00000 п.
    0000020509 00000 п.
    0000020795 00000 п.
    0000023521 00000 п.
    0000023680 00000 п.
    0000024020 00000 н.
    0000024514 00000 п.
    0000024750 00000 п.
    0000025081 00000 п.
    0000027695 00000 п.
    0000030228 00000 п.
    0000032533 00000 п.
    0000034985 00000 п.
    0000036823 00000 п.
    0000039105 00000 п.
    0000039987 00000 н.
    0000048709 00000 п.
    0000051544 00000 п.
    0000060444 00000 п.
    0000061878 00000 п.
    0000067558 00000 п.
    0000071272 00000 п.
    0000082778 00000 п.
    0000083161 00000 п.
    0000083741 00000 п.
    0000084718 00000 п.
    0000084891 00000 п.
    0000085180 00000 п.
    0000085381 00000 п.
    0000086129 00000 п.
    0000086343 00000 п.
    0000086403 00000 п.
    0000086894 00000 н.
    0000087092 00000 п.
    0000087378 00000 п.
    0000087476 00000 п.
    0000087574 00000 п.
    0000087686 00000 п.
    0000087796 00000 п.
    0000087950 00000 п.
    0000088487 00000 п.
    0000088610 00000 п.
    0000107027 00000 н.
    0000107068 00000 н.
    0000107605 00000 н.
    0000107728 00000 н.
    0000162666 00000 н.
    0000162707 00000 н.
    0000163244 00000 н.
    0000163368 00000 н.
    0000203820 00000 н.
    0000203861 00000 н.
    0000204403 00000 н.
    0000204531 00000 н.
    0000256346 00000 н.
    0000256387 00000 н.
    0000002516 00000 н.
    трейлер
    ] / Назад 6497871 >>
    startxref
    0
    %% EOF

    1131 0 объект
    > поток
    h ޤ U] U> vζ23tl).tMm: & KBS g P I74A} h2n> fI_K5Y (O |

    Конвертер проницаемости, проницаемости, паропроницаемости • Гидравлика — жидкости • Компактный калькулятор • Онлайн-конвертеры единиц

    Конвертер длины и расстояния Конвертер массы Конвертер сухого объема и общих измерений площади Обычный конвертер единиц измерения для приготовления пищиПреобразователь температурыПреобразователь давления, напряжения, модуля ЮнгаПреобразователь энергии и работыПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный конвертер скорости и скоростиКонвертер углаКонвертер топливной эффективности, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц хранения информации и данныхКурсы обмена валютРазмеры женской одежды и обувиМужская одежда и обувь и преобразователь частоты вращенияПреобразователь ускоренияКонвертер углового ускоренияПреобразователь плотностиКонвертер удельного объемаМомент инерцииПреобразовательМомент силового преобразователяПреобразователь крутящего моментаПреобразователь удельной энергии и теплоты сгорания (на массу) c Конвертер энергии сгорания (на объем) Конвертер температурного интервалаКонвертер теплового расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициентов теплопередачиКонвертер массового расхода Конвертер раствора Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяженияПроницаемость, проницаемость, проницаемость водяного пара Конвертер скорости передачи водяного параКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер световой интенсивностиКонвертер световой интенсивности и светового разрешения От мощности (диоптрия) к фокусному расстоянию Конв. erterПреобразователь оптической мощности (диоптрий) в увеличение (X )Преобразователь электрического зарядаЛинейный преобразователь плотности зарядаПреобразователь поверхностной плотности зарядаПреобразователь объемной плотности зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и удельной проводимостиПреобразователь электрического сопротивленияПреобразователь электрического сопротивления Конвертер калибра проводаПреобразование уровней в дБм, дБВ, ваттах и ​​других единицах Преобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляПреобразователь магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Конвертер радиоактивного распада Конвертер радиоактивного облученияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровой визуализации Конвертер единиц измерения объема древесины Калькулятор молярной массы Периодическая таблица

    Мембрана молекулярного сита

    Обзор

    Деревянная черепица, установленная на фанеру, покрытую битумной бумагой с проницаемостью 5 проницаемостей

    проницаемость — это связанные понятия, которые мы обсуждаем в этой статье. Проникновение просто относится к процессу проникновения или просачивания вещества через материал. Эти вещества представляют собой жидкости, газы или пары, а материалы, в которые они входят, обычно являются твердыми телами. Проницаемость указывает степень, с которой другое вещество может проникать в данный материал, обычно измеряется для конкретных условий, таких как давление, время и температура. Проницаемость тесно связана с проницаемостью, но это относится к степени проникновения жидкости или газа в конкретный объект заданной толщины.

    Основное различие между проницаемостью и проницаемостью состоит в том, что в то время как оба измеряют скорость проникновения жидкости, газа или пара в данный материал, проницаемость является свойством твердого материала пропускать жидкость или газ, в то время как проницаемость является индикатор того, сколько жидкости или газа пронизывает данный материал заданной толщины. Таким образом, проницаемость — это свойство конкретной мембраны или барьера с заданной толщиной, а проницаемость — это свойство материала, из которого сделана мембрана или барьер.

    Барьеры в строительстве

    В строительстве необходимо изолировать внутреннюю часть дома от элементов, включая воду, снег и водяной пар. Это сделано для комфорта и сохранения предметов внутри дома, которые не устойчивы к воде и влажности, например, электроники и мебели. Кроме того, в современных зданиях изоляция, которая для правильного функционирования должна быть сухой, часто устанавливается внутри стен. Для защиты этой изоляции крайне важно не допускать попадания влажного воздуха или воды из комнат или извне в пространство внутри стен.Для достижения этой низкой проницаемости используются мембраны и пароизоляция .

    Гидроизоляция часто выполняется с помощью пластмасс, но это также могут быть краски, фанера, фольга и другие материалы. Мембраны и барьеры могут быть полностью непроницаемыми или могут иметь некоторую степень проницаемости, в зависимости от предполагаемого использования. Они могут либо герметизировать внешнюю поверхность стены, либо окружать изоляционный материал внутри стены.

    При разработке углеводородов

    Проницаемость геологических структур является важным свойством для разработки углеводородов — нефть и газ .Углеводороды образуются в течение длительного периода времени под воздействием высокой температуры и давления из органических остатков растений и животных. Формирование начинается, когда эти остатки накапливаются на дне водоема, например, на морском дне. Со временем они постепенно погружаются глубже, температура и давление повышаются, и образуются углеводороды. Геологические структуры, содержащие нефть и газ, особенно порода над нефтяными или газовыми образованиями, играют важную роль, позволяя углеводородам свободно течь вверх или улавливая их, в зависимости от двух свойств породы: ее пористости и проницаемости.

    Камень в верхней половине рисунка очень пористый и заполнен маслом, показано черным цветом. Нижняя порода имеет низкую пористость, хотя в ней все еще хранится некоторое количество нефти.

    Пористость

    Для образования нефтяного или газового коллектора необходимо несколько условий. Во-первых, пласт-коллектор , содержащий углеводороды, должен быть пористым, достаточно, чтобы углеводороды могли проникнуть внутрь. Это означает, что в породе есть небольшие капилляры или полости, и из-за них значительная часть общего объема породы пуста.Можно сказать, что эта порода имеет высокую пористость . На иллюстрации верхняя порода очень пористая, а пустые пространства заполнены нефтью, показанной черным цветом. Нижняя порода не очень пористая, поэтому в ней очень мало нефти. Важно отметить, что порода-коллектор не обязательно является материнской породой , в которой углеводород был первоначально образован из органических компонентов. Возможно, что нефть и газ в какой-то момент переместились из материнской породы в коллектор, особенно если нефтематеринская порода очень проницаема.

    Проницаемость

    Обе породы, показанные коричневым цветом, имеют внутри поры и карманы, заполненные нефтью (черным цветом). Поры в первой породе взаимосвязаны, и нефть может свободно перемещаться в породу и выходить из нее. Мы говорим, что эта порода имеет высокую проницаемость. Полости во второй породе не связаны, что указывает на очень низкую проницаемость этой породы. Нефть и другие вещества не могут течь через эту породу.

    Если углеводороды могут легко входить и выходить из материнской породы и беспрепятственно течь вверх через геологическую структуру, они будут улетучиваться и разливаться вместо того, чтобы храниться, и было бы очень трудно или даже невозможно добыть их.Следовательно, должно быть уплотнение, которое предотвращает утечку углеводородов, что-то, что заставляет их оставаться на месте. Это может быть механизм внутри породы-коллектора или внешний слой вокруг породы-коллектора, известный как уплотнительная порода , который блокирует восходящее движение нефти и газа. В любом случае порода, препятствующая перемещению нефти и газа, должна иметь низкую проницаемость. Это означало бы, что либо силы внутри породы препятствуют свободному течению нефти или газа в породу и из нее, либо поры и полости породы плохо связаны между собой.Поры первой породы на иллюстрации хорошо взаимосвязаны, а порода имеет высокую проницаемость, при этом нефть (показана черным) свободно течет внутрь и выходит из нее. Полости второй породы не соединены между собой, что обеспечивает очень низкую проницаемость породы. Нефть в этой породе задерживается. Такая установка создает жесткую «губку», которая собирает внутри себя углеводороды. Если эта «губка» проницаема, то она имеет герметичное уплотнение для жидкости и газа для предотвращения восходящего потока.

    Герметичная порода должна иметь низкую проницаемость для предотвращения просачивания углеводородов через эту породу.Механизм, который предотвращает утечку нефти и газа, также может представлять собой комбинацию герметичной породы и породы-коллектора с низкой проницаемостью. Часто под углеводородами находится вода, которая не дает им двигаться вниз.

    Нефть показана черным (B), а газ серым (C) улавливается изолирующими породами (A и E). Под газом находится слой воды (D). Верхняя ловушка образована складками, а нижняя — результатом разломов.

    Эта установка называется ловушкой .Это показано на рисунке. Ловушки могут образовываться во время тектонических процессов, таких как смещение трещиноватой породы, известное как разлом (нижняя ловушка на иллюстрации) или искривление породы, известное как складчатость (верхняя ловушка на иллюстрации). Нефть и газ остаются в ловушке до тех пор, пока выполняются указанные выше условия низкой проницаемости. Как правило, эти ловушки встречаются в осадочной породе , созданной из органических и неорганических материалов, опускающихся на дно водоема.Некоторые ученые также считают, что ловушки образуются из-за переменного давления воды, хотя некоторые оспаривают эту теорию. Нефть и газ в двух ловушках на иллюстрации показаны черным (B) и серым (C) соответственно. A и E — скалы тюленя.

    Низкая проницаемость пластовой породы

    Когда пластовая порода сама по себе действует как уплотнение, она должна иметь низкую проницаемость при сохранении высокой пористости, чтобы оставлять место для хранения нефти или газа. Его капилляры сконфигурированы таким образом, что сила, толкающая углеводороды вверх, уравновешивается капиллярной силой, которая предотвращает утечку углеводородов.Другая возможность состоит в том, что полости не связаны между собой, как мы описали ранее, и не пропускают ничего внутрь или наружу. В этом случае, чтобы получить нефть из этой породы, необходимо изменить структуру породы и открыть проходы между этими полостями.

    Примером знакомого и легко вообразимого вещества с низкой пористостью и высокой проницаемостью является мука. Если мы не смешаем ее с маслом или другой жидкостью и не изменим при этом конфигурацию полостей между частицами муки, мука не будет накапливать эту жидкость, даже если между частицами достаточно места.Как только мы смешаем муку с водой, жидкость останется внутри и не вытечет. Примером породы-коллектора с аналогичными свойствами (высокой пористостью и низкой проницаемостью) является сланец , сланец . Это осадочная порода, в структуре которой есть частицы глины.

    Проблема с такими материалами, как мука или сланец, заключается в том, что жидкости очень трудно попасть в пространство между частицами материала, поэтому, если углеводороды из этих пространств до или во время образования самой породы, или если Материал с высокой пористостью и низкой проницаемостью каким-то образом смешивается с углеводородами (например, если нефть смешивается с песком), нефть и газ не могут легко проникать внутрь такого материала и храниться внутри этого материала.Когда образуется сланец, как органические, так и неорганические частицы откладываются на дне водоема, и образование нефти и газа начинается и продолжается после образования сланца. Вот как углеводороды попадают внутрь материалов с низкой проницаемостью, и, оседая в структуре сланца и освобождая место для себя, они обеспечивают пористость этого материала.

    Разработка породы коллектора с низкой проницаемостью является сложной задачей, поскольку извлечение жидкости из материала с низкой проницаемостью является проблемой, поскольку капилляры и полости плохо связаны, и жидкость не течет свободно внутри структуры.Приведенные ниже специальные методы увеличения проницаемости применяются для решения этой проблемы.

    Добыча углеводородов

    Для добычи нефти и газа пробурена скважина, достаточная для достижения ловушки. Затем его обсаживают и цементируют для усиления. Нефть и газ не всегда равномерно распределяются по скважине, поэтому обсадная труба скважины перфорируется в области залежей нефти или газа. В ловушке может быть достаточно давления, чтобы вытолкнуть углеводороды в скважину — в этом случае они собираются на поверхности.Однако этот тип экстракции встречается редко. Чаще всего давление недостаточное, и его необходимо контролировать искусственно. Нефть и газ могут подниматься путем откачки или вытесняться другими материалами, такими как вода, которая закачивается в ловушку искусственно. При добыче нефти в скважину можно закачивать природный газ вместо воды.

    Нефть и газ добываются через скважины (показаны красным). Когда вертикальные скважины неэффективны, можно пробурить горизонтальные скважины для увеличения добычи.Когда этого недостаточно, проницаемость породы-коллектора искусственно повышается путем ее растрескивания в процессе, известном как гидравлический разрыв пласта или гидроразрыв пласта.

    Исторически скважины бурятся вертикально в землю. В последнее время горизонтальные «ответвления» также пробуриваются в областях, где сосредоточены нефть или газ, но порода-коллектор имеет низкую проницаемость. На иллюстрации показана такая горизонтальная скважина. Здесь пластовая порода имеет очень низкую проницаемость, что требует использования альтернативных способов добычи.

    Для увеличения добычи из низкопроницаемой породы-коллектора, эту проницаемость можно также увеличить механически. Один из способов сделать это — расколоть породу коллектора и «подпереть» эти трещины, чтобы позволить нефти или газу свободно вытекать из породы. Гидравлический разрыв пласта , также иногда называемый гидроразрывом , делает именно это. Вы можете увидеть это на иллюстрациях, а крупный план показывает более подробную информацию о том, как могут выглядеть эти переломы (выделены красным).

    Крупный план гидроразрыва пласта или гидроразрыва пласта.Смесь жидкости и проппанта, такого как песок, взрывает трещины в породе и позволяет газу или нефти свободно вытекать из соседних полостей.

    Во время гидроразрыва пласта жидкость, смешанная с песком или керамическими частицами, закачивается в скважину под давлением, достаточным для растрескивания породы. Песок и частицы, называемые проппантами , удерживают трещины «открытыми» после того, как жидкость уйдет. Жидкость часто бывает более вязкой, чем вода, поэтому проппанты взвешиваются в ней и равномерно распределяются по трещинам.

    Гидравлический разрыв пласта может быть использован в новых скважинах, но его также можно использовать для заброшенных скважин и месторождений для их дальнейшей разработки. Экологи отмечают ряд проблем с этим методом, включая отходы от производства и загрязнение грунтовых вод, почвы и окружающего воздуха. Они представляют опасность для окружающей среды и здоровья. Несмотря на эти опасения, в настоящее время используется технология гидравлического разрыва пласта, поскольку она значительно увеличивает общее количество потенциальных нефти и газа, добываемых из данной области низкопроницаемой породы-коллектора.

    В медицине и средствах индивидуальной защиты

    В медицине часто необходимо блокировать или ограничивать количество пара или жидкости, которые контактируют с лекарством, потому что такое воздействие может сделать его менее эффективным. Воздействие на кожу и органы человека, особенно контакт между открытыми ранами и жидкостью или паром, может способствовать передаче, заражению и росту бактерий и вирусов. Для повышения безопасности и эффективности лекарств, медицинских процедур и медицинского обслуживания в целом для изготовления контейнеров для хранения лекарств используются материалы с низкой проницаемостью.Они также используются для изготовления защитной ленты, перчаток, барьеров и другого медицинского защитного оборудования. Может потребоваться некоторая проницаемость, например, маски для лица должны пропускать воздух для дыхания.

    Проницаемость — важный фактор усвоения лекарств организмом. В некоторых случаях проницаемость мембран в организме человека анализируется, чтобы определить ограничения в абсорбции лекарств организмом. Для устранения этих ограничений свойства препаратов корректируются. Некоторые лекарства и диагностические вещества нацелены на центральную нервную систему и должны проникать через защитную систему организма, гематоэнцефалический барьер, который защищает мозг от потенциальной инфекции.Проницаемость этого барьера контролируется нашим телом с помощью комбинации механических и биохимических средств. Этот барьер имеет низкую проницаемость, и лекарства должны проникать через него. Эта проблема часто представляет собой очень серьезную проблему для фармацевтических компаний, которые разрабатывают лекарства для воздействия на определенные области центральной нервной системы, включая области мозга, например, при диагностике и лечении опухолей головного мозга. Нанотехнологии в настоящее время рассматриваются как потенциальная технология для решения этой проблемы.К некоторым лекарствам предъявляется противоположное требование — они не должны проникать через гематоэнцефалический барьер.

    Проницаемость гематоэнцефалического барьера обычно определяется организмом человека на основании текущих процессов в организме и необходимости защиты мозга от инфекции, но в некоторых случаях травмы и заболевания могут ослабить этот барьер, увеличивая риск инфекции. Возможно и обратное — заболевание может снизить проницаемость гематоэнцефалического барьера, что, в свою очередь, будет препятствовать попаданию некоторых жизненно важных веществ, таких как глюкоза, в центральную нервную систему в количествах, необходимых организму.

    Кожа — это барьер с низкой проницаемостью, используемый защитной системой организма.

    Кожа — еще один барьер с низкой проницаемостью, используемый системой защиты организма. Однако он пропускает определенные вещества, и это позволяет нам проводить локализованное лечение, помещая лекарства на кожу вокруг обрабатываемой области. Другие преимущества лекарства, всасываемого через кожу, включают медленное всасывание, которое в некоторых ситуациях может быть полезным либо для удобства, либо для обеспечения того, чтобы пациенту было легче соблюдать режим приема лекарств.Например, смена пластыря на коже один раз в неделю может быть проще, чем ежедневный прием лекарства. Всасывание лекарства через кожу обходит желудочно-кишечный тракт и направляет лекарство непосредственно в кровь — это еще одно преимущество, особенно если существует вероятность того, что лекарство может расщепляться и стать неэффективным в процессе пищеварения.

    Важно знать проницаемость кожи, чтобы лекарство могло проникнуть в нее, например, при использовании кожных пластырей.Знание проницаемости кожи также полезно при работе с опасными веществами, которые могут попасть в организм через кожу. В некоторых случаях необходимо защитить кожу и искусственно уменьшить ее проницаемость, чтобы не допустить поглощения организмом вредных химических веществ. При работе с такими веществами могут потребоваться средства индивидуальной защиты, такие как перчатки, сделанные из материалов с низкой проницаемостью.

    Фильтры

    Проницаемость — важное свойство фильтров.Фильтры с более высокой проницаемостью обычно пропускают более крупные частицы, поэтому чем ниже проницаемость, тем меньше частицы могут пройти через фильтр. Фильтры широко используются в промышленности и быту. Управление отходами — один из примеров использования фильтров.

    Дом отдыха с выгребной ямой

    Фильтры в очистных сооружениях

    Утилизация отходов является постоянной проблемой вблизи населенных пунктов. С древних времен люди собирали отходы и хранили их в резервуарах, известных как выгребные ямы , которые являются предшественниками септиков .Раньше выгребные ямы делались из проницаемых материалов и позволяли небольшому количеству жидкости из отходов просачиваться в землю и удерживать остальные отходы. Позже выгребные ямы были построены из материалов с более низкой проницаемостью и спроектированы так, чтобы удерживать большую часть отходов, чтобы минимизировать загрязнение окружающей среды. Сливные ямы нужно опорожнять, когда они наполняются. Оба они по-прежнему используются в сельских районах, а также в развивающихся странах, которые не имеют хорошо налаженной инфраструктуры управления отходами, хотя многие юрисдикции постепенно отказываются от выгребных ям из-за экологических проблем.

    Септики фильтруют, перерабатывают отходы и выбрасывают их в окружающую среду. Они фильтруют отходы через песочные фильтры, а оставшиеся твердые отходы частично разрушаются бактериями, а затем попадают в окружающую среду. Некоторые отходы остаются в резервуаре и позже удаляются во время очистки, в противном случае резервуар забивается и становится непригодным для использования.

    Сброс человеческих отходов в окружающую среду без обработки или с минимальной обработкой проблематичен из-за загрязнения водных путей и земли, а также из-за возможности создания питательной среды для бактерий.По мере того, как население становилось более плотным, а промышленность развивалась, количество отходов быстро увеличивалось, что сделало выгребные ямы неэффективными для решения этих проблем. Водные пути вокруг больших городов стали загрязненными, что привело к распространению болезни и запаха. Ситуация в Лондоне необычно теплым летом 1858 года стала настолько серьезной, что запах нарушил работу общественных судов и Палаты общин. Это лето было известно как «Великая вонь» . Для решения этих проблем были разработаны системы удаления сточных вод и обращения с отходами.

    Современные предприятия по обращению с отходами собирают жидкие отходы по сети подземных трубопроводов или каналов и доставляют их на предприятие по переработке. Там жидкость оседает и затем фильтруется через несколько фильтров с разной проницаемостью. Исходный фильтр имеет очень высокую проницаемость, фактически он отфильтровывает только крупные объекты, такие как мусор, листья и ветки. Дополнительные фильтры удаляют другие элементы, а отходы также обрабатываются бактериями для разложения органических компонентов.Иногда его также можно обработать химическим путем. В конечном итоге остаются твердые, а иногда и высушенные отходы, а также вода в относительно чистом состоянии. Вода возвращается в окружающую среду, а твердые отходы, также называемые илом, сжигаются, используются в качестве удобрений или сбрасываются в специально отведенных местах.

    Лабораторное оборудование обратного осмоса

    Мембранная технология

    Мембранная технология также использует фильтры для разделения веществ, обычно газов и жидкостей.Иногда он используется при обработке жидких отходов, а также в медицине для искусственной очистки и фильтрации жидкостей организма, таких как кровь. Например, искусственные легкие и почки используют мембранную фильтрацию.

    Проницаемость мембран варьируется в зависимости от размера частиц вещества, которое необходимо отделить. Фильтрация обычно делится на обратного осмоса, , которая является наивысшей степенью фильтрации; нанофильтрация , которая фильтрует вирусы и другие элементы аналогичного размера и используется для умягчения воды; микрофильтрация , которая может фильтровать бактерии, некоторые эритроциты и некоторые дрожжи, и используется при холодной стерилизации для сохранения вкуса пищевых продуктов и лечебных свойств фармацевтических препаратов, для очистки нефти и обработки молока, среди прочего; и фильтрация частиц , которая фильтрует более крупные эритроциты, волосы, дрожжи, пыльцу и песок среди других материалов.

    Обратный осмос часто используется для фильтрации и очистки воды для питья и других целей, для концентрирования таких веществ, как соки и молоко, и во многих других областях. Основным принципом этого является фильтрация под давлением в определенных термодинамических условиях. Следовательно, проницаемость — не единственное свойство, влияющее на фильтрацию. Он называется «обратным», потому что он противоположен естественному процессу, осмосу, когда раствор перемещается из областей с низкой концентрацией в области с высокой концентрацией.Давление заставляет жидкость перемещаться через мембрану в обратном направлении при обратном осмосе, и мембрана останавливает концентрацию частиц в растворе.

    Список литературы

    Эту статью написала Екатерина Юрий

    У вас есть трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

    научных статей, журналов, авторов, подписчиков, издателей

    Как крупный международный издатель
    академических и исследовательских журналов Science Alert издает
    и разрабатывает названия в партнерстве с самыми
    престижные научные общества и издатели.Наша цель
    заключается в том, чтобы максимально широко использовать качественные исследования.
    аудитория.
    Мы прилагаем все усилия, чтобы поддержать исследователей
    которые публикуют в наших журналах. Есть масса информации
    здесь, чтобы помочь вам публиковаться вместе с нами, а также ценные
    услуги для авторов, которые уже публиковались у нас.
    2021 цены уже доступны. Ты
    может получить личную / институциональную подписку перечисленных
    журналы прямо из Science Alert. В качестве альтернативы вы
    возможно, пожелает связаться с выбранным вами агентством по подписке.
    Направляйте заказы, платежи и запросы в службу поддержки.
    в службу поддержки клиентов журнала Science Alert.
    Science Alert гордится своей
    тесные и прозрачные отношения с обществом. В виде
    некоммерческий издатель, мы стремимся к самым широким
    возможное распространение публикуемых нами материалов и
    на предоставление услуг высочайшего качества нашим
    издательские партнеры.
    Здесь вы найдете ответы на наиболее часто задаваемые вопросы (FAQ), которые мы получили по электронной почте или через контактную форму в Интернете.В зависимости от характера вопросов мы разделили часто задаваемые вопросы на разные категории.
    Азиатский индекс научного цитирования (ASCI)
    стремится предоставить авторитетный, надежный и
    значимая информация по освещению наиболее важных
    и влиятельные журналы для удовлетворения потребностей мировых
    научное сообщество.База данных ASCI также предоставляет ссылку
    к полнотекстовым статьям до более чем 25000 записей с
    ссылка на цитированные ссылки.

    .