Теплоизоляция из пенополистирола: Экструдированный пенополистирол (ЭППС): размеры и цены за м2/м3

Применение пенополистирола — Вяткастройдеталь

Утеплене стен, домов, кровель с помощью полистирольного пенопласта

Пенопласт, благодаря своим свойствам, обеспечивает необходимую и достаточную теплоизоляцию зданий. Одним из основных преимуществ пенополистирола является способность нести относительно высокую механическую нагрузку при минимальной плотности. Это в значительной степени определяет возможности его использования в строительстве. В последнее время особое значение приобретает использование пенополистирола, кроме малоэтажного строительства, и в качестве внутренней теплоизоляции при изготовлении трехслойных панелей для крупнопанельного домостроения, а также при монолитном строительстве. Особо следует подчеркнуть возможность использования пенополистирола, который благодаря низкой средней плотности практически не изменяет нагрузку на несущие конструкции и фундамент, для реконструкции старых домов. С использованием пенополистирола получаются добротные теплые энергосберегающие дома.

  1. Утепление стен.

    Полистирольный пенопласт можно применять как для наружной, так и для внутренней теплоизоляции стен. К внешней стороне стены теплоизоляционные плиты крепятся с помощью монтажных приспособлений или приклеиваются мастикой, клеем, цементным раствором. Пенополистирол обязательно нужно защищать от прямого воздействия открытого пламени. Для этого используют различные негорючие материалы: кирпич, керамическую плитку, стальной или алюминиевый профиль, различные штукатурки и др. Прекрасный теплоизолирующий эффект достигается при использовании пенополистирола для теплоизоляция стен и внутренних помещений. В этом случае материал проявляет свои шумозащитные свойства.
    Ощутимо повышается комфортность помещений. Однако и в этом случае пенополистирол необходимо защищать от открытого пламени. Для этих целей прекрасно подходят гипсокартонные листы. Для стен предпочтительный метод изоляции — установка плит пенополистирола толщиной около 40 мм в полость стены на поверхность внутренней ее части с небольшим зазором между наружной частью стены для предотвращения мостика, по которому может передаваться влага. Плиты по размеру и форме легко нарезаются ножом или пилой с мелким зубом и крепятся простыми стеновыми анкерами с шагом 400…500 мм по вертикали и 900…1000 мм по горизонтали.
    Другой вариант теплоизоляции заключается в креплении плиты пенополистирола непосредственно к наружной или внутренней поверхности. Для наружного крепления рекомендуется плита толщиной 50…80 мм, для внутреннего — 20…30 мм. В обоих случаях плиты крепятся адгезивными клеящими составами или механическими креплениями. В обоих случаях необходима облицовка. При внутреннем креплении плиты из пенополистирола обшиваются гипсокартонными листами или покрываются обычной штукатуркой. При наружном креплении плит — их поверхность отштукатуривается двумя слоями цементного раствора, нанесенного на прочную основу (например, металлическую сетку).

  2. Утепление полов.

    Применение пенополистирольных плит в качестве теплоизоляции пола и перекрытий служит эффективным средством для их теплоизоляции и снижения передачи ударного шума (шаги, передвигаемая мебель, работающие компьютеры, принтеры и т.д.) и обеспечит вам теплый пол. В этом случае плиты из пенопласта (пенополистирола) толщиной до 50 мм укладываются обычно на слой материала с изолирующими свойствами. После герметизации швов наверх укладывается шпунтованная древесностружечная плита, песчано-цементная или бетонная смесь толщиной 6 см.

  3. Утепление кровель.

    Теплоизоляция крыши широко используемых в зданиях коммунального назначения и квартирных домах, осуществляется следующими способами.
    «Невентилируемая (теплая) крыша»: крыша покрывается пенополистирольными плитами ППС толщиной около 70 мм, на поверхность которого укладывается водостойкий битумный слой.
    «Вентилируемая (холодная) крыша» : пенополистирольные плиты ППС устанавливаются на тыльную сторону крыши, при этом оставляется вентилируемая полость, предотвращающая конденсацию водяных паров. Чердачные помещения могут служить хорошими жилыми комнатами. Теплоизоляция двухскатной крыши при сравнительно небольших расходах приносит большую пользу. Для этого необходимо вмонтировать в промежутки между стропилами один или несколько слоев пенополистирольных плит общей толщиной, равной толщине стропил.

  4. Утепление несущих элементов фундаментов.

    Фундамент — основа здания. От него зависит долговечность и в значительной мере тепловой комфорт. Поэтому вопрос по теплоизоляции фундаментов, особенно в регионах с суровым климатом, должен ставиться на одно из первых мест. Традиционно пенопласт применяют в качестве средней части трехслойных фундаментных блоков. Однако свойства материала и его качество позволили применять фундамент современной более эффективной конструкции. В современном фундаменте пенополистирол (пенопласт) используют в качестве несъемной опалубки при изготовлении и монолитного фундамента непосредственно на объекте. Это существенно снижает расход бетона, арматуры и трудозатраты.
    Хорошо зарекомендовал себя пенополистирол (пенопласт) при устройстве бесподвальных строений. В этом случае на подготовленную площадку укладываются плиты утеплителя в один или несколько слоев, заливаются бетоном и далее возводится строение обычным порядком. При такой конструкции бетонная стяжка одновременно является фундаментом и основанием пола. Конечно, это не исключает необходимости устройства точечного фундамента под несущие опоры. Особо отметим возможность применения пенополистирола в целях изоляции фундаментов для предотвращения промерзания. Специалистам строителям и эксплуатационникам хорошо известны последствия этого природного явления. Поэтому в северных регионах защита фундаментов от промерзания, а также возможность строительства на мерзлоте имеет важное значение.
    Пенополистирольные плиты можно применять для вертикальной и горизонтальной защиты фундаментов от промерзания. Для этой цели вдоль фундамента отрывается траншея шириной порядка 1 м и глубиной, определяемой промерзанием грунта. Плиты теплоизоляции укладываются вдоль фундамента и засыпаются. В некоторых случаях необходимо дополнительное устройство гидроизоляции.

  5. Применение на трубопроводах.

    Известно, что теплоизоляции инженерных коммуникаций до последнего времени не придавалось должного значения, хотя доля теплопотерь через них составляет порядка 30%. Для теплоизоляции трубопроводов холодного водоснабжения, вентиляционных каналов, телефонных линий и заглубленных кабелей в последнее время все чаще стали применять пенополистирол. Этот материал также используют для защиты водопроводных и канализационных труб городских магистралей от замерзания. Благодаря этому, трубопроводы можно укладывать на меньшей глубине, намного сокращая объем вынутого грунта. Несомненным достоинством применения пенополистирола для теплоизоляции трубопроводов является возможность придания материалу практически любых форм, что способствует функциональному приспособлению к конструктивным требованиям.

  6. Пенополистирольный пенопласт в холодильном оборудовании.

    Пенополистирол используется при строительстве холодильных помещений, витрин, морозильных установок, холодильников, вагонов-холодильников, емкостей для транспортировки сухого льда, складских помещений и т.д. При применении пенополистирола в холодильной технике учитывается такой показатель, как коэффициент теплопроводности и влагопоглощения. И он по этим свойствам превзошел традиционные теплоизоляционные материалы, используемые в холодильной технике, например, экспанзит и мипору. Названные материалы постепенно впитывают влагу. А это отрицательно сказывается на эффективности изоляции. Поэтому конструкции должны быть выполнены таким образом, чтобы изоляция в течение длительного времени оставалась сухой. Для этой цели применяют дополнительные влагозащитные покрытия от проникновения водяных паров. Пенополистирол лишен подобных недостатков, так как водопоглощение плит не превышает 3%. Пенополистирол имеет закрытую ячеистую структуру, что исключает капиллярное водопоглощение. Такое ценное качество предотвращает промораживание и разрушение пенополистирола. Он не подвержен гниению. Из этого следует: срок эксплуатации теплоизоляции из пенополистирола составляет более 100 лет, причем его изоляционные свойства не ухудшаются. Поэтому для теплоизоляции стен, перегородок, потолков охлаждаемых объектов применяют пенополистирол, обладающий стабильными физико-техническими свойствами.
    Холодильные камеры по устройству делят на два основных типа: размещенные внутри помещения и занимающие только часть его и занимающие помещение полностью. Камеры первого типа имеют двойные стены: стены здания и камеры. В камерах второго типа наружные стены здания являются и стенами камер. При двойном ограждении стены холодильных камер находятся в более благоприятных условиях, так как подвержены действию меньшего перепада температур, а следовательно и температурных деформаций. В летний период от солнечной радиации наружные поверхности крыш и стен могут нагреваться до 60…70°C, и если температура в камере -20°C, то перепад температур очень существенен. Это крайне нежелательно для всех несущих и ограждающих конструкций. Поэтому применение пенополистирола необходимо.
    В холодильных камерах, предназначенных для хранения пищевых продуктов, теплоизоляция должна выполняться (подвешиваться) и со стороны потолка камеры. В остальных случаях допускается устройство теплоизоляции сверху перекрытия. Теплоизоляция может быть повреждена грызунами, поэтому ее защищают на высоту 1 м от перекрытия сеткой из стальной проволоки с ячейками 6х6 мм, заводя ее в перекрытие на 0,5 м. Сетки закрепляют в перекрытии и стене. Межкамерные перегородки, так же как и стены, должны иметь дополнительную теплоизоляцию.
    Холодные хранилища. Полы холодных хранилищ подвергаются как большой статической нагрузке со стороны складируемых товаров, так и динамической от транспортных средств, например, вилочных погрузчиков. Используемая для этих полов теплоизоляция должна быть устойчивой к таким нагрузкам в течение длительного времени, не деформироваться и не протекать. Материал должен быть влагостойким и сохранять свои теплоизоляционные свойства при низких температурах. Пенополистирольные плиты отвечают этим требованиям. В полах холодных хранилищ часто используются обогревающие кабели, встроенные прямо в бетонные плиты под теплоизоляционным слоем, с целью предотвращения промерзания залегающего ниже грунта. При этом теплоизоляционный слой должен быть защищен паронепроницаемым слоем. Стены холодных хранилищ.
    При кирпичной кладке или бетонных стенах плиты пенополистирола могут укладываться в один или несколько слоев для получения заданных теплоизоляционных характеристик. Первый слой плит крепится к паронепроницаемому слою при помощи цементного или битумного раствора, а последующие слои закрепляются клеящим материалом. Для стен высотой свыше 2,5 м рекомендуется применение механического крепления. С внутренней стороны стены холодных хранилищ могут покрываться штукатуркой или металлообшивкой. Штукатурка должна подходить для использования в холодных хранилищах и не быть слишком паронепроницаемой. Для компенсации веса штукатурки следует устанавливать не реже чем через 2,5 м дополнительные горизонтальные опоры. Обшивку из металлопрофиля следует закреплять горизонтальными кронштейнами между двумя теплоизолирующими слоями с интервалом около 2 м. Этот способ может быть использован лишь при возведении новых сооружений.

Лучший пенополистирол для утепления стен

Назвать экструдированный пенополистирол решением всех теплоизоляционных проблем сложно. Влагостойкий материал превосходно зарекомендовал себя: в утеплении подземных конструкций, полов и оснований под напольную плитку. В качестве теплоизоляции фасада дома легкие несложные в самостоятельной укладке панели чаще задействуются при отсутствии других вариантов. Какой пенополистирол лучше для утепления стен?

Какие преимущества и недостатки у пенополистирольной теплоизоляции?

Начнем с хорошего. Это:

Монтаж пенополистирола на фасад

  • уникально низкая теплопроводность,
  • достаточно высокая прочность к механическим нагрузкам,
  • температурным, влажностным и химическим воздействиям.

Легкий утеплитель не создает нагрузок на изолируемые конструкции. Поэтому является одним из немногих материалов используемых при отделке старых домов, прочность которых не позволяет задействовать более совершенные минераловатные утеплители. Срок эксплуатации пенополистирольных конструкций – в пределах 50 и более лет.

Недостатков у пенополистирольных немного, но именно они ограничивают применение материала для реализации ответственных проектов. Структура утеплителя характеризуется нулевой паропроницаемостью блокирующей в стенах природный парогазообмен. Пенополистирол обладает низкой термостойкостью, более того горит с выделением большого количества удушливого дыма.

Все сказанное относится только к экструдированному пенополимеру. Что касается одинакового по составу пенопласта, то свойства этого доступного по стоимости утеплителя менее совершенные. В частности пенопласт имеет зернистую фактуру, состоящую из склеенных гранул пенополистирола. Это основная причина низкой стойкости к нагрузкам на сжатие, недостаточной влаго-морозостойкости и относительно непродолжительного срока службы.

В каких случаях оправдано применение пенополистирольных утеплителей?

Вариантов немного. Это утепление старых домов на которых из-за большого веса исключается монтаж минераловатной теплоизоляции. В сыром холодном климате материал может стать альтернативой гигроскопической минераловатной теплоизоляции.

Еще один вариант – это дешевый и доступный для самостоятельного монтажа утеплитель пенополистирол, характеристики которого очень хорошо подходят для использования его в качестве бюджетной облицовки легкого дачного домика.

Как самостоятельно выбрать качественный пенополистирольный утеплитель?

В этом отношении проблемы не существует. Строительный рынок предлагает относительно небольшой ассортимент утеплителей разной плотности. В зависимости от планируемых нагрузок отдается предпочтение пенополистирольным панелям марки ПСБ-С-15, ПСБ-С-25 и ПСБ-С-35, толщиной от 30 до 100 мм.

Крепление утеплителя с помощью тарельчатого дюбеля

  • В умеренном климате оптимальное теплосохранение стен и перекрытий обеспечат панели толщиной 40мм. В северных регионах этот показатель составляет 60мм. Качественный утеплитель изготовленный из первичного сырья, характеризуется однородной структурой без посторонних включений.
  • В отличие от пенопласта, экструдированный пенополистирол может иметь: голубой, желтый или иной оттенок. Так производители выделяют свою продукцию в общем ассортименте. На качестве и долговечности материала цвет панелей не отражается.
  • Новые модели пенополистирола имеют в своем составе противопожарные антипиреновые компоненты, которые очень хорошо противодействуют образованию пламени.

При монтаже лучшего утеплителя для фасада пенополистирола, в дополнение к клеевой фиксации задействуется тарельчатый дюбельный крепеж.

Длина дюбелей определяется толщиной утеплителя, изделие забивается или заворачивается в бетонное основание не более чем на 30 мм. Для поризованного пено- или газобетона этот показатель увеличивается до 60 мм. Невыполнение этого требования может инициировать образование мостиков холода.

Заказывайте уже сегодня утепление Вашего дома пенополистиролом в нашей компании!

характеристики, утеплитель для стен, фасада, фундамента, пола |

Пенополистирол (он же вспененный полистирол, он же пенопласт) – утеплитель, получивший широкое распространение в строительных работах, связанных с устройством теплоизоляции.

Оглавление

Пенополистирол и его виды

Материал получают вспениванием синтетического полистирола водяным паром и природным газом. Застывшие шарики пены на 98% состоят из воздуха и только 2% в них полистирола. Готовый материал разрезают на листы стандартных размеров.

Повышенной прочностью обладает пенополистирол экструзионный. Другие его названия — пенополистирол технониколь (от названия производителя), и пеноплекс. Его изготавливают вспениванием под давлением, увеличенная прочность позволяет применять экструдированный утеплитель в несущих конструкциях. При изготовлении шариков материала, не скрепленных между собой в плоский лист, получается гранулированный пенополистирол — насыпь из пенопластовых шариков диаметром до 8 мм.

Высокая популярность материала связана с его дешевизной, сочетающейся с отличными теплоизоляционными свойствами и лёгкостью в обращении (доставка, монтаж). По данным статистики, 80% работ по утеплению выполняется с использованием двух видов синтетических утеплителей – обычный и экструдированный пенополистирол.

Насколько велики у пенополистирола характеристики теплоизоляции и какого эффекта можно достигнуть при утеплении этим материалом?

Как происходят потери тепла

Тот факт, что дома излучают тепло, был известен давно. Весной дорожки вдоль стен раньше освобождаются от снега, чердачное пространство дома всегда теплее наружного воздуха. Однако увидеть размер тепловых потерь стало возможным только в середине 20-го столетия. Появившиеся приборы для измерения тепловых потоков – тепловизоры – стали определять и показывать размеры теплового инфракрасного излучения. Повышение цен на теплоносители, удорожание стоимости отопления дополнялись потрясающими картинками, на которых дома были сфотографированы в инфракрасном излучении, где были отчётливо видны контуры тёплого фона вокруг зданий.

Американская теплосъёмка территории СССР из космоса показала всеобщее тепловое свечение жилых строений, что на фоне изолированных домов Европы производило впечатление обогрева воздуха.

По данным тепловизоров около 40-50% потерь тепла происходит через проёмы окон и 20-30 % терялось через стены и строительные швы. Остальные потери приходятся на крышу и проветривание.

Утепление зданий

Сокращение потерь тепла сквозь стены дома достигается их утеплением. Слой утеплителя лучше устанавливать с наружной стороны обогреваемого помещения, так, чтобы точка ноля сместилась из опорной стены в теплоизолятор.

Перечень применяемых утеплителей содержит натуральные и синтетические материалы. Войлок, ватин и пакля (натуральные), минеральная вата, стекловата и пенопласт (искусственные). Среди имеющихся на рынке материалов утеплитель для стен пенополистирол пользуется наибольшей популярностью. Какие преимущества утепления этим материалом?

Преимущества утеплителя

Теплопроводность пенополистирола (0,037-0,043 Вт/м*С°) обеспечивает теплоизоляцию выше, чем у минеральной ваты (0,046 Вт/м*С°), в 4 раза лучше, чем у дерева (0,18 Вт/м*С°), в 8 раз превышает сухой пенобетон и в 20 раз – кирпичную стену.

Доступность. Пенопласт, по цене доступен практически каждому домовладельцу. Стоимость листов зависит от толщины, лучшие у экструдированного пенополистирола характеристики принадлежат листам большой толщины (8 – 10 см).

Технологичность. Плиты теплоизолятора весят так мало, что их может унести ветром. Поэтому монтаж утеплителя может делать один человек. При высотных работах небольшой вес теплоизолирующего материала даёт возможность произвести утепление на высоте 7-го, 9-го или 14-го этажа. Плита легко разрезается пилой, возможно фигурное выпиливание нужной формы. Для укрепления утеплителя на стене используется клей для пенополистирола и дополнительные фиксаторы-«зонтики». Все перечисленные операции являются технологически несложными, не требуют дорогостоящего оборудования или высокой квалификации работника и, при необходимости, могут быть выполнены самостоятельно.

Сферы применения

Строительство

Возведение стен. Несъёмная опалубка из пенополистирола ускоряет строительство. Формы для заливки бетона (блоки) выполнены из материала утеплителя. Получаемая конструкция характеризуется хорошей теплоизоляцией, технологична и удобна в работе, что позволяет применять блоки из пенополистирола в качестве утеплённой несъёмной формы. Несъёмная опалубка теплее дерева, крепче кирпичной стены и дешевле газобетона.

Теплоизоляция фундаментов – позволяет избежать промерзания основания, этим не допускает появления микротрещин и увеличивает долговечность здания.

Теплоизоляция полов. Часто используется «тёплых» полах, где поверхность настила служит радиатором, излучающим тепло и обогревающим помещение. Пенополистирол для тёплого пола даёт возможность сократить уход тепла в землю или в подвал. Утепление пола пенополистиролом дополнительно работает в качестве вибро — и шумоизоляции работы отопительной системы пола, для этого применяются плиты с углублениями для укладки элементов отопления.

Теплоизоляция стен и фасадов. Производится как снаружи, так и внутри здания. Утепление стен снаружи (фасадное) предпочтительнее, чем изнутри. В результате получается многослойная конструкция, состоящая из несущей стены (кирпич, ракушник, бетон, саман), слоя утеплителя и защитного покрытия (штукатурка или облицовка). Утепление фасада пенополистиролом потребует дополнительных расходов. Обязательная защита утеплителя производится сайдингом, облицовочным кирпичом или «шубой». Утепление крыши. Потолочная плитка из пенополистирола благодаря небольшому весу легко устанавливается на стропилах под листами кровли, не даёт дополнительную нагрузку на стены.

Теплоизоляция инженерных коммуникаций – водопровода, канализации, кабеля связи,- позволяет уменьшить глубину их укладки, тем самым сократить стоимость водопроводных или кабелеукладочных работ.

Автомобильные дороги, железные дороги, взлётные полосы – плиты пенополистирола устанавливаются под покрытием, отделяют его от промерзающего грунта, чем увеличивают долговечность проложенных путей.

Наиболее универсальным, пригодным для любого утепления является «псб с 25».

Промышленность и хозяйственная отрасль

Пчеловодство. Ульи из пенополистирола имеют ряд преимуществ: теплоёмкость (защита от зимнего холода и летнего зноя), облегчённую конструкцию (важно для мобильных пасек), приемлемая стоимость (они дешевле деревянных). На некоторых предприятиях организовано производство пенопластовых ульев. Интересным комбинированным решением будет деревянный улей с пенопластовым утеплителем, который располагается между наружным и внутренним слоями деревянных досок. Такой улик имеет природную поверхность дерева и при этом охраняет пчелосемью от морозов -30 -40˚C.

Упаковка. Практически любая современная упаковка содержит пенопластовые детали. Стеклянная и керамическая посуда, лекарственные ампулы, коробки с техникой (ноутбук, стиральная машина, телевизор). Пенопласт для упаковки выполняется с углублениями, повторяющими форму предмета. Уплотнитель не даёт товару двигаться по упаковочной таре, предохраняет его от возможного удара. Также пенопластом изолируют скоропортящиеся продукты при транспортировке.

Амортизация. Пенопласт помещают во внутреннюю поверхность строительных касок, велосипедных, горнолыжных шлемов  и т.п.

Наполнитель. Гранулы утеплителя применяются в качестве наполнителей мягких игрушек и мебели.

Эффективность использования пенопласта для утепления подтверждается множеством положительных отзывов. При применении экструдированного пенопласта по отзывам формируется более надёжная и долговечная теплоизоляция, что в целом окупает его завышенную цену. Присутствие споров о полезности и воздухопроницаемости вспененного синтетического материала только подтверждает факт широкого распространения пенопластов. Ими утепляют всё, что требует изоляции, расположение утеплителя — практически в любом доступном месте.

 Загрузка …

Рекомендуем прочесть!

технология теплоизоляции внутренней стороны кирпичной стены экструдированным полистиролом

Недостаточная толщина или неудачный выбор материала стен зачастую приводят к нежелательным последствиям — стены холодные, на них конденсируется влага, расходы на отопление становятся слишком большими.

Решение вопроса — утепление стен.

Мероприятие не слишком сложное, но требующее понимания смысла действий, иначе можно добиться абсолютно обратного эффекта.

Тем более, что выбор наиболее верного способа иногда невозможен, а как-то выходить из положения надо. Попробуем разобраться.

Содержание статьи

Внутренняя и внешняя теплоизоляция — что лучше?

На практике используется внутренний и внешний (наружный) методы утепления стен. Если рассмотреть оба способа с физической точки зрения, то можно получить удивительный вывод: только наружный способ можно по праву называть утеплением.

Существуют несколько вариантов утеплителей:

ВАЖНО!

Причина холодных стен — недостаток тепловой энергии для их прогрева из-за больших теплопотерь. Если слой утеплителя расположен снаружи, то стена оказывается отделенной от внешнего пространства, отчего теплопотери значительно снижаются.

Температура внутренней поверхности стены повышается, исключая возможность конденсирования влаги, а точка росы — область с температурой, которая вызывает конденсацию — выносится наружу, за пределы стены. Таким образом, решаются все проблемы с удержанием тепла и намоканием материала стен.

Утепление изнутри действует обратным образом. Слой утеплителя отсекает стену от контактов с теплым воздухом помещения. Она становится еще холоднее, наружная температура практически не встречает сопротивления и остужает стену.

При этом, водяной пар, присутствующий во внутреннем воздухе, под действием парциального давления понемногу проходит через слой утеплителя. Встречаясь с холодным материалом стены, он тут же конденсируется, отчего стена промокает, что грозит последующим промерзанием и разрушением.

Различия в способах утепления

Таким образом, утепление изнутри — это, скорее, отсечка стены от контакта с теплым воздухом. Метод коварен тем, что ощущения говорят о том, что в доме стало теплее — стена на ощупь не холодная, наличие влаги между утеплителем и стеной нельзя увидеть, а заметным оно становится далеко не сразу.

Может показаться, что вопрос решен. При этом, выход пара сквозь материал стены не прекратился, просто он не заметен. Тем не менее, использование этого способа встречается довольно часто, так как работа возможна в любое время года и все можно сделать своими руками.

Если утепление снаружи невозможно, то следует выбирать наиболее непроницаемый для пара утеплитель, каким является пенополистирол (ППС). Он в какой-то мере снимает проблему наличия пара, создавая преграду для контакта стены и проникающих частиц.

Достоинства и недостатки пенополистирола

Технические характеристики пенополистирола говорят о максимальной пригодности материала к внутреннему утеплению:

  • Малый вес. Материал на 98% состоит из газа.
  • Паронепроницаемость. Полистирол — отличный пароизолятор, а экструзионный пенополистирол — ЭППС — практически полностью исключает проникновение водного пара сквозь свою толщу.
  • Низкая теплопроводность. Наличие воздушных пузырьков обеспечивает высокое теплоудержание.
  • Отсутствие реакции на воздействие влаги.
  • Прочность, легко режется, выпускается в удобной для работы форме — плитах.
  • В пожарном отношении материал нейтрален, он горит лишь при наличии инициирующего пламени, сам он источником пожара быть не может.
  • Низкая цена (для ЭППС этот пункт не совсем корректен, но качества материала того стоят).

Имеются и недостатки:

  • При достаточно высокой прочности, ППС хрупок и ломается или крошится при деформирующих нагрузках.
  • Не выдерживает контактов с растворителями типа бензина или ацетона.
  • При нагревании выше 60 градусов ППС может выделять фенолы.
  • Боится огня, потому не рекомендуется для установки внутри помещений.

Сравнение материалов теплоизоляции

Последний пункт довольно весом, так как утепление наружных стен производится вокруг радиаторов отопления, которые могут значительно нагревать участки утеплителя, находящиеся в непосредственной близости. Еще одним недостатком ППС считается его паронепроницаемость, но в рассматриваемом случае это — как раз преимущество.

Пирог стены при использовании пенополистирола

Внутреннее утепление при помощи ППС не требует создания сложной многослойной системы. Дело в том, что с физической точки зрения любой дополнительный слой будет лишь помехой, создающей препятствие для движения пара, или же он будет просто бесполезен.

Обычный состав пирога выглядит таким образом:

  • Материал стены.
  • Выравнивающий слой штукатурки. (необязательно).
  • Слой утеплителя — в нашем случае ППС или ЭППС.
  • Слой парозащитной пленки (необязательно).

Стеновой пирог

Выравнивающий слой нужен при наличии существенных изъянов на внутренней стороне стены — вмятинах, выбоинах или кривизне поверхности. Норма — 1 см на 1 м поверхности, все, что превышает это соотношение подлежит оштукатуриванию. Кроме того, слой штукатурки увеличивает толщину стены и, как следствие, в какой-то мере повышает ее теплосопротивляемость.

Парозащитная пленка — дополнительная мера, при использовании материалов с высокой паропроницаемостью она обязательна. Но, поскольку ППС сам по себе пароизолятор, а ЭППС вовсе не пропускает пар, то наличие пленки будет лишь дополнительной страховкой.

ОБРАТИТЕ ВНИМАНИЕ!

Для правильного действия пирога необходимо знать принцип построения слоев при внутреннем утеплении: паропроницаемость слоев, считая изнутри, должна следовать по убыванию.

Это способствует выводу пара, прошедшего сквозь утеплитель и потерявшего значительную часть энергии парциального давления, сквозь материал стены.

Нужна ли гидро- и пароизоляция?

Наличие гидроизоляции в стеновом пироге с использованием ППС не требуется. Пароизоляция присутствует в виде самого утеплителя, который сам по себе является отличным изолятором, хотя в исключительных случаях, когда в помещении высокое содержание водных паров, поверх слоя ППС укладывают слой пароизолятора.

При этом, одновременно с укладкой пароизолятора или утеплителя необходимо позаботиться о качественной вентиляции, чтобы организовать замену внутреннего воздуха и вывод пара наружу. Тогда в доме станет гораздо комфортнее, кроме того, уменьшится проход паров сквозь материал пирога.

Подготовка стены и монтаж обрешетки

Перед началом работ необходимо подготовить поверхность кирпичной (или другой) стены. Надо убрать старую краску, отслоившуюся штукатурку, очистить от масляных пятен или прочих загрязнений. Затем следует оценить качество поверхности и, при необходимости, нанести выравнивающий слой штукатурки. После ее отверждения можно приступать к установке обрешетки.

ВАЖНО!

Наличие обрешетки не является обязательным, она сооружается лишь для установки наружной обшивки, например, гипсокартона.

Расположение брусков обрешетки перпендикулярно будущим полосам обшивки — для вертикально расположенных стеновых панелей (например) обрешетку располагают горизонтально и наоборот. Шаг брусков соответствует размеру плит утеплителя, чтобы избежать непроизводительных потерь материала.

Толщина брусков должна соответствовать толщине ППС или быть несколько больше. Бруски рекомендуется покрыть антисептиком для защиты от плесени или грибка.

Установка деревянной обрешетки

Процесс утепления стен пенополистиролом изнутри

Рассмотрим порядок действий по установке теплоизоляции из пенополистирола своими руками:

  1. Демонтаж откосов и подоконника оконного блока, снятие плинтусов и прочих элементов, препятствующих установке утеплителя.
  2. Тщательная очистка стены от старой краски (особенно масляной), обоев, обшивки или иных отделочных материалов.
  3. Осмотр стены, оценка качества поверхности.
  4. Нанесение выравнивающего слоя штукатурки, выдержка до момента засыхания.
  5. Установка брусков обрешетки (если необходимо),
  6. Подготовка ППС — нарезка необходимых кусков по размерам.
  7. Подготовка клеящего состава (если используется сухая смесь) или специального клея в баллонах.
  8. Установка утеплителя. Работа ведется снизу вверх, клей наносится на заднюю поверхность ППС по всей площади (если применяется спецклей — по периметру и несколько полос в центре). Рекомендуется дополнительно крепить листы утеплителя дюбелями с широкой шляпкой.
  9. Стыки ППС промазываются клеем или заполняются монтажной пеной, которая после кристаллизации аккуратно подрезается.
  10. После окончания установки ППС монтируется парозащита (если надо).
  11. Установка стеновых панелей или нанесение слоя отделочной штукатурки.
  12. Установка новых откосов и подоконника, монтаж плинтусов.

Крепление дюбелями

Приклеивание плит пенополистирола

Промазываем стыки минтажной пеной

В каждом конкретном случае могут быть добавлены какие-то специфические действия, вызванные необходимостью или обстоятельствами.

В качестве вывода следует отметить, что внутреннее утепление — мера скорее вынужденная, обусловленная невозможностью более эффективного решения вопроса.

При этом, выбор ППС в качестве утеплителя наиболее удачен, этот материал обеспечивает наиболее надежную отсечку от пара и предохраняет стену от намокания и разрушения, одновременно позволяя удерживать тепло внутри дома.

Но в тоже время не стоит забывать, что полистирол пожароопасен и не рекомендуется к установке внутри помещений из соображений безопасности.

Полезное видео

Видео-инструкция по утеплению стен полистиролом:

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Теплоизоляция нового поколения | Экструдированный пенополистирол. Строим дом. Статьи о недвижимости, строительстве и ремонте. СИБДОМ

Строительные материалы сегодня намного эффективнее и долговечнее своих предшественников. Современная теплоизоляция должна не только надежно защищать помещение от холода, но и не бояться резких температурных перепадов, физических нагрузок и влажности.


Долговечность прежде всего

Как известно, долговечность здания в первую очередь зависит от срока службы используемых при его строительстве капитальных конструкций, прежде всего стен и фундамента. Если остальные элементы строения — кровли, фасады, оконные и дверные блоки — со временем могут быть заменены новыми, то эти базовые части допускают лишь частичный ремонт.


Именно по этой причине срок эксплуатации должен стать одним из основных критериев при выборе материалов для стен и фундамента. Если составляющие их конструкции подбирались без учета долговечности, ремонт в новом здании может понадобиться в лучшем случае через 10-15 лет, в худшем — уже через 1-2 года. При этом стоит отметить, что расходы на серьезную реконструкцию, как правило, превышают стоимость первоначально использованных материалов.


Класс долговечности складывается из нескольких факторов, главный из которых — применение материалов, имеющих оптимальный показатель морозо и влагоустойчивости, стойкости к коррозии и перепадам температур. Помимо этого на долговечность здания влияет еще целый ряд причин: климатические условия местности, вид конструктивного решения, надежность теплоизоляции и т.д. В результате разница в сроке службы домов одного типа может составлять десятки лет.


Хотя сегодня отсутствует общепринятая норма долговечности, при разработке конструкций стен специалисты предлагают ориентироваться на единственный из существующих стандартов — СТО 00044807 001 2006 «Теплозащитные свойства ограждающих конструкций зданий», разработанный Российским обществом инженеров строительства. В качестве основной величины он вводит так называемую прогнозируемую долговечность. По этому показателю долговечность зданий высотой до 2 этажей должна составлять не менее 50 лет, срок службы каркасно панельных, монолитных и сборно монолитных высотой до 30 этажей втрое длиннее — не менее 150 лет. Существование такого заданного срока эксплуатации зданий позволяет целенаправленно выбирать материалы для их строительства, создавать первичную или вторичную защиту, планировать сроки ремонта.


Долговечность капитальных ограждающих конструкций определяется сроком эксплуатации самой ответственной их составляющей — наружного промерзающего слоя. Для зданий, имеющих сложные слоистые ограждающие конструкции с эффективным утеплителем, долговечность определяется сроком, в течение которого теплоизоляция сохраняет свои свойства.


Снижение энергопотребления


Недостаток мощности в районах, где ведется строительство, заставляет строителей задуматься над поиском новых способов снижения энергопотребления при эксплуатации зданий. Такими методами могут стать теплоизоляция фасадов, использование лёгких бетонов, системы вентиляции с рекуперацией тепла и т. д. Однако прежде чем остановить свой выбор на одном из них, необходимо проведение экономически обоснованной оценки долговечности здания.


Одним из самых важных моментов является выбор оптимального материала для теплоизоляции наружных ограждающих конструкций. Во первых, потому что они почти не подлежат ремонту, во вторых, потому что способны оказывать значительное влияние на энергопотребление здания.


Что такое THERMIT?


Современная теплоизоляция, изготавливаемая из экструдированного пенополистирола, лишена недостатков своих предшественников. Секрет плит THERMIT кроется в особенностях их структуры. Уникальная технология производства позволяет получить материал с закрытыми ячейками, обеспечивающими теплоизоляции исключительные свойства. Так, показатель водопоглощения у плит THERMIT в 20 раз ниже, чем у любого аналогичного материала. Вдобавок они обладают очень низкой теплопроводностью (0,03 Вт/м °С), паропроницаемостью и одновременно высокой прочностью к сжатию. Материал не подвержен проседанию и другим видам физической деформации, не разрушается и не теряет своих свойств даже при значительных механических нагрузках. Ему по силам вынести внешнее воздействие величиной до 50 тонн на кв. м. Расчеты показывают, что современные теплоизоляционные плиты THERMIT долговечнее, чем обычно применяемые для этой цели плиты из беспрессованного пенополистирола (пенопласта).

Все дело в структуре


Структура плит THERMIT придает им стойкость к резким температурным перепадам. Материал идеально подходит для применения в условиях вечной мерзлоты. И позволяет значительно снизить расходы, связанные с эксплуатацией зданий и сооружений особенно, в районах Крайнего Севера.


Еще одно качество, отличающее новый материал, — стойкость к гниению. Экструдированный пенополистирол не усваивается микроорганизмами и не может стать питательной средой для грибков и бактерий. Невосприимчивость плит к воздействию влаги и экстремально низких температур, неподверженность гниению позволяет производителю — красноярскому заводу «ТHERMIT» так уверенно давать на свою продукцию пятидесятилетнюю гарантию.


Широкая сфера применения


Сфера применения плит THERMIT не ограничивается утеплением стен. Материал с успехом используется в различных областях строительства, например, плиты THERMIT 35 рекомендуется использовать для наружного и внутреннего утепления стен, фундаментов, полов и кровель в зданиях производственного и жилого назначения, тогда как у плит THERMIT-45 задача не менее ответственная, они не позволяют промерзать конструкциям автомобильных и железных дорог, фундаментам зданий, построенных в условиях пучинистых и вечномерзлых грунтов, а также является важным элементом инверсионных эксплуатируемых кровель.


Как известно, любое строительство начинается с создания фундамента, от того, каким он будет, напрямую зависит срок службы здания. Чтобы защитить фундамент от воздействия неблагоприятных факторов и улучшить условия эксплуатации стен, специалисты советуют проводить полную наружную теплоизоляцию по периметру его подземной части.


В коттеджном строительстве при облегченных фундаментах с низким уровнем залегания за счет использования плит THERMIT предотвращается проникновение холода через основание фундамента во внутренние помещения. Тем самым снижаются затраты на их обогрев. Сохранность тепла в помещении зависит от того, как в нем спроектировано устройство полов. Использование плит THERMIT не только позволяет снизить показатели теплопотерь, но и дает возможность использовать собственную теплоёмкость материала, аккумулирующую тепло в строительных конструкциях. Отдельного упоминания заслуживает использование экструдированного пенополистирола в качестве эффективного звукоизолятора.

Помимо собственно теплоизоляционных функций плиты THERMIT могут служить несущей основой для декоративных материалов. Пластик, дерево, ткань или металл в сочетании с ними применяются как при отделке помещений, так и для оформления фасадов.

По своей долговечности, стойкости к горению и биологическому разложению, плиты из экструдированного пенополистирола THERMIT соответствуют всем требованиям, предъявляемым к современным теплоизоляционным материалам. И идеально подходят для использования в условиях сурового сибирского климата.?

Применение — Пенопласт в строительстве

 Применение Пенопласта

Универсальность применения

Пенополистирольные плиты универсальны в применении и используются для теплоизоляции при строительстве и ремонте зданий и сооружений, для звукоизоляции при ударных шумовых нагрузках, для создания термоизолирующих объемов (например, морозильные камеры, изотермические фургоны и рефрижераторы) и упаковки, а также в других областях народного хозяйства.

Утепление несущих элементов фундаментов

Теплоизоляция фундаментов чрезвычайно важна, т.к. от этого значительно зависит долговечность и тепловой баланс зданий и сооружений. Поэтому вопрос по теплоизоляции фундаментов, особенно в местах с суровым климатом ставится на одно из ключевых мест.

Обычно пенополистирол применяют в качестве средней части трехслойных фундаментных блоков. Свойства данного материала и его качество позволили изготавливать фундамент более эффективной и современной конструкции.

Хорошо зарекомендовал себя пенополистирол при устройстве бесподвальных строений.

В этом случае на подготовленную площадку укладываются плиты утеплителя в один или несколько слоев, заливаются бетоном и далее строение возводится обычным порядком.

В современном фундаменте пенополистирол (пенопласт) используют в качестве несъемной опалубки при изготовлении и монолитного фундамента непосредственно на объекте.

Пенополистирольные плиты можно эффективно применять для вертикальной и горизонтальной защиты фундаментов от промерзания. Плиты пенополистирола укладываются вдоль фундамента и засыпаются. В некоторых случаях необходимо дополнительная гидроизоляция. При такой конструкции бетонная стяжка одновременно является фундаментом и основанием пола.

Особо отметим возможность применения пенопласта в целях изоляции фундаментов для предотвращения промерзания.

Утепление полов (межэтажных перекрытий)

Плиты пенопласта являются отличным средством для теплоизоляции пола и межэтажных перекрытий.

Применение пенопластовых плит в полах и  межэтажных перекрытиях служит эффективным средством для их теплоизоляции и снижения передачи ударного шума и вибрации.

При теплоизоляции пола плиты пенополистирола укладываются на слой изолирующего материала, поверх нее укладывается цементная (бетонная) смесь.

Утепление кровель (крыши)

Теплоизоляция кровель бывает следующих видов:

«Невентилируемая (теплая) крыша» — крыша покрывается пенополистиролом  ПСБС, на поверхность которого укладывается гидроизоляция.

«Вентилируемая (холодная) крыша» – пенопласт укладывается на тыльную сторону крыши, но при этом оставляется вентилируемая полость, предотвращающая конденсацию водяных паров.

Плиты пенополистирола также применяются для теплоизоляции двускатных крыш.

Утепленние стен — внутреннее и наружное (фасад)

При утеплении стен пенополистирольные плиты укладываются в полость стены с небольшим зазором между внутренней и наружной частью стены.

Пенополистирольные плиты легко нарезать и крепить с помощью монтажных приспособлений, приклеивать клеем, мастикой или цементным раствором.

Возможен другой вариант теплоизоляции — когда плиты пенополистирола крепятся  непосредственно к внутренней или наружной поверхности.

Во всех случаях плиты крепятся либо механическими креплениями (н-р дюпелями), либо клеящими составами, после чего их необходимо качественно облицовывать.

Пенопластовые плиты всегда необходимо защищать от воздействия открытого огня, поэтому они обшиваются гипсокартонном или штукатурятся.

При внутренней теплоизоляции пенополистирольными плитами существенно повышается комфортность помещения (т.к. кроме теплоизоляционного пенопласт имеет и шумопоглощающий эффект).

При наружном креплении плит ПСБ-С их поверхность оштукатуривается цементным раствором, нанесенным на прочную основу – обычно сетку.

Снаружи пенополистирол закрывают разными материалами – плиткой, кирпичом, штукатуркой и т.п.

Теплоизоляция фасадов дает дополнительный барьер для наружной поверхности стены от воздействия ветра и дождя, а также от сезонных перепадов температур.

Становится очевидно, что при наружной теплоизоляции фасада здания его стены круглый год будет находиться в зоне положительных температур и в сухом состоянии.

Все резкие изменения температуры окружающей среды воспринимаются утеплителем, и поэтому стена не испытывает негативного разрушающего воздействия и не происходит тепловых потерь – этим и обеспечивается эффективная теплоизоляция дома. (Картинка с сайта penoplast-opt.ru или наподобие)

Несъемная опалубка из пенополистирола.

Несъемная опалубка из пенополистирола, предназначена для быстрого возведения монолитных зданий различной этажности, как непосредственно несущих конструкций так и для заполнения проемов наружных стен в рамно-связевых зданий. Эта теплосберегающая технология по теплозащите, звукоизоляции, комфортности, простоте, скорости и стоимости строительства, прочности и долговечности строений относится к высоким технологиям в области строительства.

Несъемная опалубка из пенополистирола используется в строительстве:

  • Коттеджей, сельских домов и дач
  • Многоэтажных жилых домов
  • Танхаусов, каскадных двух и трехэтажных многоквартирных домов
  • Теплых индивидуальны бассейнов
  • Административных общественных зданий и спорткомплексов, холодильников, сервисных объектов, овощехранилищ и складов

Применение на трубопроводах

Немалая часть теплопотерь приходится на инженерные коммуникации, поскольку их теплоизоляции долгое время не уделялось должного внимания.

В последнее время для теплоизоляции трубопроводов холодного водоснабжения, вентиляционных каналов и т.п. все чаще стали применять пенопласт.

Этот материал также используют для защиты водопроводных и канализационных труб городских магистралей от замерзания.

Благодаря этому материалу, трубопроводы можно укладывать на меньшей глубине, что существенно снижает расходы на выемку грунта.

Несомненным достоинством применения пенополистирола для теплоизоляции трубопроводов является возможность придания материалу практически любых форм, что способствует функциональному приспособлению к конструктивным требованиям.

Купить Пенопласт

Преимущества и недостатки утепления пенополистиролом

Экструдированный (экструзионный) пенополистирол — это материал синтетического производства, основной функцией которого является теплоизоляция. Есть и другое, торговое название этого материала — пеноплекс. Основной сферой его использования является теплоизоляция фундамента, кровли, пола и цоколей. Также применяется при строительстве железнодорожных и автомобильных дорог.

Существует ошибочное мнение, что пенополистирол и пенопласт — два названия одного материала. Однако это не так. Основная схожесть этих двух материалов в их сферах применения — звуко- и теплоизоляции самых разных поверхностей.

Отличия пенополистирола и пенопласта

  1. Первое различие заключается в методе производства. Пенополистирол образовывается благодаря методу “экструзии”, который происходит при плавлении гранул полистирола. Пенопласт получается при обработке сухим паром гранул полистирола, при этом образовываются пустоты – микропоры.
  2. Второе отличие можно найти в физических и технических характеристиках материалов. Пенополистирол превосходит пенопласт в некоторых из них. Об этом далее.

Основные плюсы пенополистирола по сравнению с пенопластом:

  • плотность. Этот критерий у пенопласта ниже в 3 раза. Из этого следует, что пенополистирол тяжелее;
  • прочность. Пенопласт — лишь сцепка отдельных частиц, тогда как пенополистирол — единая составляющая целого вещества. В случае изменений условий хранения материалов пенопласт начинает крошиться, но пенополистирол — нет;
  • проницаемость. Как говорилось ранее, в структуре пенопласта есть микропоры, они же пустоты, которые склонны к заполнению влагой. А это в свою очередь может нарушить теплоизоляцию. У пенополистирола показатель влагопоглощения в 10 раз ниже, чем у пенопласта.
  • полное отсутствие восприимчивости к биологическому воздействию и отсутствие какого-либо запаха
  • легкость в работе с материалом
  • высокую устойчивость к растворителям и щелочам.

Недостатки пенополистирола

Одним из разрушающих факторов пенополистирола является непереносимость солнечных лучей, под действием которых он окисляется. Данный материал также не гарантирует стопроцентной звукоизоляции. В его силах приглушить ударный шум, но не воздушный. К явным минусам пенополистирола смело можно отнести высокий процент горючести. Он подвержен быстрому возгоранию,а позже — сгоранию, если находится на открытом воздухе.

Распространенная ошибка среди пользователей — установка тридцати сантиметровой плиты с расчетом, что материал такого размера прослужит дольше и греть будет лучше. Но это не так. От перепадов температур внутри материала могут появиться трещины либо волны, наполненные холодным воздухом. Помимо этого, чем больше толщина материала — тем серьезнее риск отравления угарным газом во время пожара.

Итоги

Мы рассказали основные плюсы и минусы пенополистирола. Далее Вы сможете найти рекомендации, как правильно выбрать пеноплекс:

  • Перед покупкой следует изучить параметры материала и решить, что именно с его помощью Вы хотите утеплять. Здесь важно обращать внимание на маркировку и классификацию;
  • Важно проверить наличие на материале нужных характеристик и параметров;
  • Попробуйте отломить кусочек материала. Если он разломился и при разрыве вы замечаете мелкие шарики, то это низкокачественный сорт материала.
  • Несмотря на наличие у пенополистирола таких недостатков, как горючесть и окисляемость, на рынке он остается достаточно популярным материалом для проведения теплоизоляции.

EPS GEOFOAM BACKFILL IN ENGINEERING PROJECTS

EPS Geofoam может быть отличным вариантом при поиске легкой засыпки, заполнения пустот или заменителя почвы для гражданского строительства. Блок EPS Geofoam — это пенополистирол, сформированный в большой легкий блок, часто используемый в качестве заменителя грунта для инженерных и строительных проектов.

Insulation Company of America (ICA) — это компания-производитель пенополистирола со знаком «Сделано в Америке», расположенная в Аллентауне, штат Пенсильвания. Большая часть бизнеса ICA — это поставки блоков EPS Geofoam для различных гражданских и строительных проектов в Среднеатлантическом регионе и их продажа напрямую сети оптовых продавцов EPS.ICA предоставит бесплатное предложение Geofoam для вашего проекта и организует прямую доставку.

Многие государственные и государственные транспортные проекты требуют от подрядчиков использования только утвержденных строительных материалов. Блоки EPS Geofoam теперь широко приняты по всей стране в качестве одобренного и предпочтительного заменителя почвы.

Обратная засыпка Geofoam имеет множество преимуществ, которые делают ее привлекательной альтернативой почве, песку и другим материалам, в том числе: легкий, экономичный, простой в маневрировании и долговечность.

Министерство транспорта Содружества Пенсильвании опубликовало БЮЛЛЕТЕНЬ 15 — PUB 35, перечень подходящей продукции для строительства государственных проектов. На веб-сайте говорится: «Этот бюллетень представляет собой список предварительно отобранных материалов, которые могут использоваться в строительных проектах департамента. Цель Бюллетеня 15 — предоставить подрядчикам, консультантам, персоналу отделов, производителям, поставщикам и другим лицам легкий доступ к полному и точному списку одобренных продуктов и их одобренного использования.«Блоки EPS Geofoam одобрены в качестве подходящего строительного материала для проектов. Компания Insulation Company of America, принадлежащая женщине, находится в Пенсильвании, и является утвержденным поставщиком проектов Geofoam в Пенсильвании.

Для вашего следующего проекта, который требует почвы или заменителя почвы, попросите компанию по производству пенопласта, принадлежащую женщине на вашем заднем дворе, предоставить конкурентоспособное предложение!

Использование Geofoam в качестве заменителя грунта становится предпочтительным методом строительства.Преимущества могут превратить мухи слона в горы сбережений.

Давайте разберем некоторые из преимуществ:

Geofoam легкий и управляемый

Нет необходимости в установке тяжелого оборудования. Geofoam стабилизирован, что позволяет увеличить производительность и придерживаться графика строительства. Это означает экономию средств на стройплощадке.

Geofoam устойчив к погодным условиям

Задержки дождя из-за влажной почвы и песка могут стоить строительной площадке тысячи долларов.Засыпка геопеной не смывается.

Легко подобрать

Geofoam может изготавливаться в виде блоков различных размеров, различной плотности, и его легко разрезать для любого применения. Все дело в математике. Выясните, какая прочность требуется, и Geofoam может быть изготовлен в соответствии с вашими требованиями. Чтобы максимизировать эффективность, ICA имеет регулируемую форму для изготовления блоков нестандартного размера, чтобы избежать отходов. Но если у вас есть отходы, EPS также можно перерабатывать.

До неузнаваемости

В хорошем смысле! Как и невоспетый герой, Geofoam незаметно скрывается за многими проектами, делая их возможными, безопасными и долговечными.

Все эти преимущества могут существовать отдельно, но что у них общего? Использование долговечной и предсказуемой Geofoam позволяет сэкономить ДЕНЬГИ.

Стоит ли делать покупки вокруг при поиске материалов для легкой засыпки? Мы так думаем! Спросите Insulation Company of America о бесплатном расчете стоимости вашего проекта Geofoam — вы можете быть удивлены.


Запросите БЕСПЛАТНУЮ цену на геопену

В чем разница между изоляцией XPS и EPS?

Энергоэффективность здания часто зависит от материалов, из которых оно изготовлено.Выбор подходящего типа изоляции имеет решающее значение для обеспечения требуемых изоляционных характеристик для вашего проекта. Использование изоляции XPS и EPS в строительстве зданий обеспечивает большую гибкость, совместимость и тепловую эффективность для всех областей ограждающей системы здания. Но в чем разница между изоляцией EPS и XPS?

Производство

Изоляция из экструдированного полистирола (XPS) производится методом экструзии. Этот непрерывный процесс приводит к образованию закрытой ячеистой структуры с гладкой пленкой сверху и снизу доски.Структура с закрытыми порами из экструдированного полистирола (XPS) предотвращает проникновение воды в структуру изоляционной плиты и обеспечивает долгосрочную прочность и долговечность.

Изоляция из пенополистирола (EPS)

производится с использованием шариков пенопласта внутри формы, затем тепло или пар подается непосредственно на шарики, что заставляет их расширяться и плавиться. В результате этого процесса образуется структура с закрытыми ячейками, а не изоляционная плита с закрытыми ячейками из-за пустот, которые могут возникать между валиками.

Прочность на сжатие

Прочность на сжатие требуется в самых сложных условиях, например, под плитами на плоской крыше, бетонными полами, фундаментами, площадками и подиумами, а также в холодильных камерах. В целом, при сравнении плотности плит EPS и XPS прочность на сжатие у XPS выше, чем у EPS. Чтобы EPS достиг той же прочности на сжатие, что и XPS, плотность пенопласта должна быть увеличена, что часто приводит к необходимости большей толщины плиты.

Теплопроводность

Изоляция — один из наиболее практичных и экономически эффективных способов повышения энергоэффективности здания. За счет улучшения изоляции в новых и существующих зданиях можно добиться значительной экономии затрат и сокращения энергопотребления. И XPS, и EPS обеспечивают хорошую теплопроводность. Однако воздух, застрявший в пустотах пенополистирола, будет проводить тепло. Для соответствия тепловым характеристикам изоляции XPS потребуется плита EPS с гораздо большей плотностью.

Изоляция EFYOS XPS — это ведущий в отрасли ассортимент теплоизоляционных плит с закрытыми порами из экструдированного полистирола (XPS) с чрезвычайно высокими эксплуатационными характеристиками, подходящих для многих сложных и разнообразных изоляционных материалов, включая перевернутые и зеленые крыши, включая конструкции крыш с нулевым падением в сочетании с гидроизоляцией с нулевым падением SOPREMA. системы, полы, стены и подземные работы.

Диффузия водяного пара

Сопротивление диффузии водяного пара (μ) EPS составляет примерно от 30 до 70 по сравнению с сопротивлением диффузии водяного пара (μ) XPS, которое находится в диапазоне примерно 80–250.XPS часто выбирают вместо EPS для более влажных сред, требующих более высокого сопротивления диффузии водяного пара.

• Запросите образец здесь

• Дополнительную информацию о линейке XPS см. Здесь

Информация, содержащаяся в этой статье, носит общий характер и не основана на производственном процессе одного производителя. Чтобы узнать больше, свяжитесь со специалистом по гидроизоляции и изоляции SOPREMA UK.

Численное и экспериментальное исследование изменения теплопроводности пенополистирола при различных температурах и плотностях

Определение теплопроводности изоляционных материалов в зависимости от того, какие параметры применяются, а также при производстве, очень важно.В этом направлении следует определить параметры, влияющие на теплопроводность, чтобы повысить эффективность изоляционных материалов. Также фактом является то, что блоки из пенополистирола имеют разную теплопроводность при одинаковом значении плотности в зависимости от производственного процесса. В этом исследовании экспериментально и численно было определено, что теплопроводность пенополистирола при различной плотности зависит от параметров и изменений температуры.Пенополистирол состоит из блоков плотностью 16, 21 и 25 кг / м 3 и толщиной 20 мм. Измерения теплопроводности проводились на FOX 314 (Laser Comp., США), работающем в соответствии со стандартами ISO 8301 и EN 12667. Измерения проводились для пенополистирольных блоков при средних температурах 10 ° C, 20 ° C, 30 ° C и 40 ° C. Численное исследование состоит из трех этапов: получение электронных микроскопических изображений (SEM) пенополистирольных блоков, моделирование геометрии внутренней структуры с помощью программы CAD и реализация решений с помощью программы ANSYS на основе конечных элементов.Определены результаты экспериментальных и численных исследований, а также параметры, влияющие на теплопроводность. Наконец, считается, что численные методы могут быть использованы для получения предварительного представления о материале EPS при определении теплопроводности путем сравнения результатов экспериментальных и численных исследований.

1. Введение

Рост населения мира и развитие промышленности увеличили потребность в энергии. Эта потребность вызывает потребление энергоресурсов и наносит серьезный ущерб окружающей среде.Энергия должна использоваться эффективно, чтобы уменьшить воздействие на окружающую среду из-за ограниченных ресурсов. Энергия потребляется в различных сферах, таких как промышленность, транспорт, сельское хозяйство, недвижимость и другие секторы. В развитых странах потребление энергии в домах составляет примерно 30% [1, 2]; поэтому снижение энергопотребления в зданиях важно как для экономики, так и для окружающей среды. Утепление, сделанное с целью минимизировать теплопотери в домах, — очень важный вопрос.Сегодня в качестве критериев оценки используются многие характеристики изоляционных материалов, такие как теплопроводность, толщина, пористость, прочность, звукопроницаемость и огнестойкость. Среди этих критериев на первый план выходит теплопроводность — главная характеристика изоляционных материалов.

Теплопроводность изоляционных материалов, используемых для домов, была определена в среднем на уровне 10 ° C в соответствии с европейскими стандартами [3]. Однако с учетом климатических условий средний температурный интервал колеблется от 0 ° C до 50 ° C.Исследование теплопроводности изоляционных материалов при различных температурах важно для эффективного использования энергии. В последнее время особую популярность приобрели пенопластовые изоляционные материалы из-за их низкой теплопроводности, и они широко используются, потому что технология производства пенополистирола проста, стоимость производства невысока [4], поры материала закрытые, материал непрочен. водонепроницаемы, и они обладают низкой теплопроводностью из-за содержащегося в них воздуха [5–10].

Теплопроводность материала изменяется в зависимости от определенных микроскопических параметров: величины ячейки, порядка ячеек, свойств теплового излучения и свойств клеящего материала [11]. Кроме того, поведение мономера стирола в его твердой фазе в зависимости от температуры существенно влияет на теплопроводность пенополистирола, а также воздуха в нем [3]. Изменение теплопроводности и механических свойств материалов определялось по плотности и производственным параметрам [12].Экспериментально установлено, что теплопроводность уменьшается с увеличением плотности [13] и увеличивается или уменьшается с изменением критической толщины материала [7, 14]. Таким образом, необходимо изучить взаимосвязь между температурой и плотностью теплопроводности пенополистирола, используемого для изоляции в домах.

Очень важно правильно оценить значение теплопроводности. Измерения удельной теплопроводности были определены крупными исследователями [6, 12].Существует множество различных типов изоляционных материалов с разной структурой материала и с разными тепловыми свойствами. Чтобы получить правильные результаты, необходимо определить метод измерения в соответствии со всеми этими критериями. Значение теплопроводности можно определить тремя различными методами: экспериментальным, численным и аналитическим. Конкретный используемый метод зависит от типа материала. В литературе обычно используются экспериментальные методы для определения теплопроводности изоляционных материалов [3, 6, 7, 11, 13, 15], но существует также ограниченное количество фундаментальных исследований, проводимых путем изучения внутренней структуры с использованием численных методов. методы, а также экспериментальные [15–17].

За исключением нескольких исследований, определяющих теплопроводность численно, исследования в литературе обычно проводились экспериментально. В этом исследовании были использованы экспериментальные и численные методы, а затем проведено сравнение для определения теплопроводности пенополистирола. Было детально рассмотрено, верны ли численные методы или нет. При проведении численного исследования были изучены изображения, полученные с помощью сканирующего электронного микроскопа (СЭМ), и исследование было проведено с помощью конечно-элементного анализа на основе программы ANSYS с учетом температурно-зависимого изменения теплопроводности воздуха и полистирольного материала. в пенополистироле.Изменение теплопроводности пенополистирола исследовали при различных плотностях и температурах. Были определены параметры, которые влияют на теплопроводность пенополистирола, и было получено понимание того, что следует делать для производства материалов с более низкой теплопроводностью.

2. Материал и метод

Пенополистирол, использованный для исследований, был произведен компанией TIPOR (Турция) и имел толщину 20 мм и плотность 16, 21 и 25 кг / м. 3 .

Для экспериментального определения теплопроводности материала EPS при средних температурах 10 ° C, 20 ° C, 30 ° C и 40 ° C использовались образцы с размерами 25 мм. Перед проведением измерений образцы подвергали сушке при 70 ° C в вентилируемой печи для полного удаления влаги. Измерения массы проводились с 24-часовыми интервалами во время процесса сушки, и он продолжался до тех пор, пока разница не стала менее 0,2%. Когда желаемый интервал измерения был достигнут, процесс сушки был завершен и начались процессы измерения теплопроводности.В экспериментальных исследованиях использовался прибор FOX 314 (Laser Comp., США), работающий по стандарту ISO 8301 и измерения по принципу метода горячей пластины [18]. В этом методе количество теплового потока, возникающего в результате разницы температур между горячей и холодной пластинами устройства, измерялось с помощью датчиков, а теплопроводность рассчитывалась с использованием одномерного уравнения теплопередачи Фурье. Для определения теплопроводности образцов было проведено пять независимых измерений.Значение теплопроводности образцов рассчитывалось как среднее из пяти измеренных значений.

Применение численных методов, используемых для определения теплопроводности пенополистирола, было проведено с помощью блок-схемы, представленной на рисунке 1. Программа ANSYS 16.1 на основе конечных элементов использовалась для применения численных методов, Программа AutoCAD 2016 использовалась при моделировании геометрии, а программа Matlab 2016 использовалась при анализе изображений.

Образцы, подготовленные для моделирования геометрии, были вырезаны в форме тонкой пластины для получения изображений их внутренней структуры, и они были прикреплены к медной полосе, поверхность которой была покрыта тонким слоем устройство для позолоты. После процесса нанесения покрытия изображения были получены с разным коэффициентом масштабирования для образцов с разной плотностью в сканирующем электронном микроскопе (SEM). Полученные изображения под электронным микроскопом были исследованы, изучена внутренняя структура материала, проведен анализ изображений и создана геометрическая модель.Исследование пикселей на изображении проводилось в соответствии с цветовыми тонами в анализе изображения во время геометрического моделирования, и пределы воздуха и полистирола, образующего пенополистирол, стали более понятными. Геометрическое моделирование проводилось в программе AutoCAD 2016 с использованием изображений, полученных в результате анализа изображений. Были сделаны некоторые исключения, чтобы минимизировать ошибки в формировании геометрии, и изменения произошли в ограниченных наборах.Таким образом, было сформировано множество моделей и проведено исследование удобной для изучения модели.

Перенос моделей, геометрия которых формировалась программой ANSYS, производился для формирования сетевых структур и необходимых граничных условий. Треугольные элементы использовались для областей, образованных воздухом, который формировал поры, и полистирольными материалами из пор, а растворы наносили в узловую точку в соответствующих количествах для достоверности результатов.В процессе решения необходимые граничные условия были определены для правой и левой стенок сформированной модели относительно достижения средних температур 10 ° C, 20 ° C, 30 ° C и 40 ° C, как показано на рисунке 2. Для верхней и нижней стенок были заданы граничные условия изоляции, реализованы одномерные решения. Транспорт и теплопередача незначительны, если диаметр ячейки примерно на 4 мм меньше [8]. В результате пренебрежение теплопередачей, поскольку она намного ниже при естественном переносе, не было ошибочным принятием с точки зрения правильности результатов.

Граничные условия следующие:

Температура и изменяющаяся ситуация были приняты во внимание при определении свойств материалов для компонентов, образующих пенополистирол, необходимых во время численных решений. Свойства материала для воздуха и полистирола, образующего пенополистирол, приведены в таблицах 1 и 2.

02551


Температура (K) Плотность (кг / м 3 ) Удельная тепло (Дж / кг.К) Теплопроводность (Вт / мК)

278 1,269 1006 0,02401
283 0,07

1,225 1007 0,02476
293 1,204 1007 0,02514
298 1,184 1007 1007
303 1,164 1007 0,02588
308 1,145 1007 0,02625
1,109 1007 0,02699

26

9048


Температура (К) м /кг.K) Теплопроводность (Вт / м · К)

240 1071 998 0,1394
260 1060 1060 1051 1140 0,1507
300 1041 1230 0,1558
320 1031 1310 0.1591
340 1021 1405 0,1616
360 1011 1500 0,1629

903


903 Результаты экспериментов

Значение теплопроводности высушенного пенополистирола с различными значениями плотности было экспериментально измерено для средних температур 10 ° C, 20 ° C, 30 ° C и 40 ° C с использованием метода измерения теплового потока. .Полученные результаты измерений приведены в таблице 3 и на рисунке 3 в зависимости от температуры.

3

903 903


Температура (° C) 1. Измерение 2. Измерение 3. Измерение 4. Измерение 5. Измерение
10 0,03333 0,03323 0,03330 0,03330 0.03322
20 0,03467 0,03455 0,03463 0,03461 0,03454
30 0,03591 0,0357 0,0357 0,0356 9012 9012 9012 0,0357 0,0356

0,03591 0,0357 0,03

0,03698 0,03706 0,03703 0,03696

Наблюдалось линейное распределение каждого значения плотности пенополистирола в зависимости от температуры.В результате этого исследования степень падения или увеличения была определена с использованием метода регрессии. Таким образом, остатки, выраженные как функция температуры, представлены в следующих уравнениях. Значение теплопроводности может быть определено с коэффициентом погрешности всего 0,1%, используя балансы (уравнения), полученные с помощью метода регрессии.

3.2. Измерения с помощью SEM

Изображение, полученное с помощью электронного микроскопа на рис. 4, было получено для пенополистирола плотностью 25 кг / м 3 в приблизительном соотношении величин, чтобы получить представление о внутренней структуре с точки зрения проведения численных расчетов. исследования.

При изучении рисунка 4 стало понятно, что структура пор не является однородной и имеет две разные структуры пор для пенополистирола. Когда изображение, полученное с помощью электронного микроскопа, было получено при более близком увеличении, в котором структура пор представляет собой неправильную макропору, можно было наблюдать, что оно имеет ячеистые поры, как показано на рисунке 5. Когда изображения, полученные в результате сканирования с помощью электронного микроскопа ( SEM) были изучены, было обнаружено, что зона, показанная черным цветом, была воздушной текучей средой, а оставшаяся белая зона представляла собой твердый материал из полистирола.

Общеизвестно, что диаметр пор на микроуровне у пенополистирола изменяется от 100 до 300 мкм, а диаметр пор уменьшается с увеличением плотности [8, 17]. Когда была исследована внутренняя структура пенополистирола с различными значениями плотности, было обнаружено, что размеры пор уменьшаются из-за увеличения плотности, как показано в литературе, как показано на Фигуре 6. Многие изображения, полученные с помощью электронного микроскопа, были исследованы с 16, 21 и 25 кг / м 3 для пенополистирола, и было определено, что средний диаметр ячеистых пор составляет приблизительно 141 мкм, 116 мкм и 95 мкм соответственно.

В результате исследований был сделан выбор правильной модели, в которой более четкое различие между воздухом и полистиролом было сделано для расчета геометрии внутренней конструкции. Выбранные изображения и изображения, полученные в результате обработки изображений, показаны на Рисунке 7.

Дизайн геометрической модели был получен с использованием изображений электронного микроскопа, которые были переданы в программу ANSYS и для которых были реализованы численные решения. При проведении численных решений предполагалось, что передача тепла происходит только через трансмиссию.Значение теплопроводности было найдено численно, рассматривая его как проблему теплопередачи: определяя одномерный тепловой поток или распределение температуры и используя уравнение теплопередачи Фурье.

Здесь был определен как средний тепловой поток, рассчитанный в программе ANSYS, был определен как разница температур между левой и правой стенками образцов и была определена как длина в направлении теплопередачи.

Решения были сделаны для средних температур 10 ° C, 20 ° C, 30 ° C и 40 ° C для смоделированной геометрии.Было определено среднее количество теплового потока, передаваемого в результате решений, и значение эффективной теплопроводности было численно рассчитано для каждого образца и значения температуры с помощью уравнения 3. Данные, полученные с помощью численных решений, можно найти в таблицах 4, 5, а также 6 и рисунки 8, 9 и 10. Данные измерения теплопроводности, использованные для подтверждения результатов этого исследования, можно получить у соответствующего автора по запросу.

2

9048 9048 9048 9048 9048


Средняя температура (° C) Средний тепловой поток (Вт / м 2 ) Длина (м) Разница температур () Эффективное значение теплопроводности ( Вт / м.К)

10 728,569 10 0,03424
20 745,446 745,446

10 0,03623
40 800,148 10 0,03761

Средний тепловой поток (Вт / м 2 ) Длина (м) Разница температур () Эффективное значение теплопроводности (Вт / м.К)

10 705.730 10 0,03317
20 724.935 724.935

10 0,03496
40 759,697 10 0,03571

Средний тепловой поток (Вт / м 2 ) Длина (м) Разница температур () Эффективное значение теплопроводности (Вт / м.К)

10 669.119 10 0,03145
20 693.253 10321

10 0,03375
40 733,428 10 0,03447

9115 9115 показано на рисунке 11.

4. Выводы

Знание того, какие факторы изменяют значение теплопроводности, является очень важным вопросом, важным параметром для материалов, используемых для уменьшения потерь энергии. В результате исследований известно, что значение теплопроводности изменяется в зависимости от распределения, размера и соотношения пор для материалов с пористой структурой, а исследований пенополистирола (EPS) недостаточно. Все данные, полученные или проанализированные в ходе этого исследования, включены в эту опубликованную статью.

На изображениях внутренней структуры пенополистирола с различными значениями плотности было определено, что компоненты материала состоят из полистирола и большого количества воздуха. Как упоминалось в литературе, если пористость исследуется на макроуровне, степень пористости составляет около 4-10%, а микропористость, как известно, составляет от 97 до 99% [17]. Причина различных значений плотности пенополистирола связана с количеством содержащихся в нем пор.

Причина, по которой при исследовании пенополистирола возникают разные значения плотности, связана с количеством содержащихся в нем пор.Было обнаружено, что количество пор уменьшается с увеличением значения плотности. Кроме того, тот факт, что диаметр пор ячеек уменьшается с увеличением плотности, был подтвержден изображениями, полученными с помощью электронного микроскопа. Из результатов видно, что значение теплопроводности экспериментально уменьшается в результате увеличения плотности. Здесь ожидается, что из-за увеличения плотности количество пор уменьшается, а за счет этого увеличивается и значение теплопроводности.Можно сделать вывод, что причина различий между материалами из пенополистирола заключается в том, что передача тепла осуществляется только с теплопроводностью между двумя одинаковыми твердыми поверхностями; плотность увеличивается, потому что перенос, происходящий в твердом материале и пограничных слоях воздуха, и скорость воздуха находятся на очень низком уровне, а теплопередача с конвекцией находится на пренебрежимо низком уровне в результате уменьшения диаметров ячеистых пор с увеличением по плотности.

При сравнении результатов, полученных с помощью экспериментальных и численных исследований, было определено, что они совпадают между собой между значениями 1% и 5%.Причины этой ошибки связаны с двумерными структурами численного исследования, исключениями, сделанными во время моделирования, и определенными характеристиками материалов компонентов.

В литературе видно, что теплопроводность пенополистиролов одинаковой толщины и разной плотности различна [3, 6, 7]. Когда были исследованы внутренние структуры различных образцов с разной плотностью, было решено, что причина, по которой они имеют разную теплопроводность, может быть связана с диаметром пор ячеек [14].Было определено, что значение теплопроводности для пенополистирола зависит от размеров ячеистых пор материала, изменения температурных и тепловых свойств компонентов и массива пор, и для этого можно использовать численные методы. получить предварительное представление при определении теплопроводности.

Доступность данных

Экспериментальные данные, использованные для подтверждения результатов этого исследования, включены в статью. Числовые данные, использованные для подтверждения результатов этого исследования, можно получить у соответствующего автора по запросу.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Благодарности

Эта работа была поддержана Отделом координации научно-исследовательских проектов Университета Кырыккале (грант №: 2016/114).

Сравнение полистиролов: различия между EPS и XPS

Фото © Bigstock.com

, Джейсон Берджесс
Изоляция — важный компонент, который необходимо учитывать при проектировании функционального, экономичного и энергоэффективного здания.Один из методов теплоизоляции здания — это установка изоляции из жесткого пенопласта толщиной от 50 до 152 мм (от 2 до 6 дюймов) на внешней стороне каркаса стены. Два наиболее часто устанавливаемых типа изоляции из жесткого пенопласта — это пенополистирол и экструдированный полистирол (EPS и XPS). Оба выполняют одну и ту же основную функцию: обеспечивают средства управления прохождением тепла в системе здания. Однако они существенно различаются.

Основная задача любого изоляционного строительного материала — обеспечить положительные тепловые характеристики.Однако это не единственный фактор, который следует учитывать при выборе изоляционного материала из жесткого пенопласта. Также очень важно знать, как он будет работать в нескольких ситуациях.

XPS производится в процессе непрерывной экструзии, в результате чего получается пенопластовая изоляция с закрытыми порами. EPS, с другой стороны, производится путем расширения сферических шариков в пресс-форме, а затем с использованием тепла и давления для сплавления шариков вместе.

У каждого продукта есть сторонники, утверждающие, что одно работает лучше другого.Однако важно понимать, что каждый продукт может больше подходить для конкретного использования, чем другой. Это можно сделать более ясным, изучив термическую и влагозащиту, огнестойкость и водостойкость каждого продукта, а также их значение для проектов, разработанных экологически рационально.

Тепловая и влагозащита
Показатель R — это показатель сопротивления материала теплопередаче. Чем выше значение R, тем лучше изоляция материала. Обычной процедурой тестирования R-значения материала является ASTM C518, Стандартный метод испытаний устойчивых свойств теплопередачи с помощью прибора для измерения теплового потока.Этот метод испытаний требует, чтобы техник измерил тепловое сопротивление образца, помещенного между холодной и горячей пластинами.

Изоляция из жесткого пенопласта в стеновой конструкции обеспечивает отличные R-значения, но не все типы жесткого пенопласта обладают одинаковыми тепловыми характеристиками.

Изоляция из жесткого пенопласта обеспечивает отличные показатели R для такого тонкого продукта, но не все жесткие пенопласты обладают одинаковыми тепловыми характеристиками. Выбор утеплителя следует делать после того, как его характеристики повлияют на качество стен.

EPS — это изоляция, наиболее широко используемая в изоляционных бетонных формах (ICF), конструкционных изоляционных панелях (SIP) и системах внешней изоляции и отделки (EIFS). У него самый низкий средний показатель R для изоляции из жесткого пенопласта, обычно R-4 на 25 мм (1 дюйм). Фактическое значение R для пенополистирола зависит от его плотности, при этом пены с более высокой плотностью имеют более высокие значения R в диапазоне от примерно 3,6 до 4,2 на 25 мм. Менее дорогой пенополистирол (обычно продаваемый в магазинах товаров для дома) имеет плотность 0,4 кг (1 фунт) на 0.02 м 3 (1 куб. Фут), соответственно называемый ППС типа I плотности. Продукты типа I обычно имеют R-3,9 на 25 мм или R-7,8 на 50 мм (2 дюйма).

Однако EPS типа II с номинальной плотностью 0,6 кг (1,5 фунта) имеет значение R от R-4,15 до R-4,2 на 25 мм. Лист толщиной 50 мм будет от R-8,3 до R-8,4. EPS типа II — это то, что будет поставлять большинство дистрибьюторов, если не указано иное. Фактически, многие подрядчики называют EPS типа II «стандартной плотностью», а не «высокой плотностью». (Эта информация взята из «Советника по экологическому строительству», издание 2015 года на Форуме, и ее можно найти на сайте www.greenbuildingadvisor.com.)

XPS с плотностью R-5 на 25 мм имеет лишь немного лучшие тепловые характеристики, чем EPS. Теплоизоляционные характеристики EPS и XPS одинаковой плотности довольно близки. Однако пенополистирол с таким же уровнем плотности дешевле. XPS обычно избегают в областях, где требуются материалы с меньшей плотностью или где материал, который не производится с плотностью ниже определенной, неприменим. В таком строительном случае использование пенополистирола в качестве менее плотного материала обеспечило бы необходимую изоляцию при гораздо меньших затратах.

PhD исследования, бумажные публикации, бумажные публикации, научные публикации

Paper Publications — одна из ведущих индийских организаций по публикации исследовательских работ. Это объединение хорошо известных ученых, заслуженных профессоров, профессоров-исследователей, академиков и отраслевых консультантов для самого широкого распространения знаний по всему миру. Наша деятельность — международная публикация статей, организация конференций на международном и национальном уровне, публикация материалов конференций и поддержка исследовательской работы отдельных ученых и авторских коллективов.Мы работаем с авторами, чтобы подготовить публикацию статей, характеризующихся исключительно высоким качеством исследований. Нашим главным приоритетом является быстрое распространение научных знаний, поэтому все наши международные журналы имеют открытый доступ.

В состав нашего редакционного и консультативного совета входят известные авторы, профессора-исследователи ведущих университетов, выдающиеся академики из Великобритании, Франции, Германии, России, Индии, Малайзии, Соединенных Штатов Америки, Канады, Италии, Греции, Японии, Юга. Корея и Иран и многие другие.Члены нашей редакционной коллегии признательны за огромный оригинальный вклад в исследовательскую работу и получают большие исследовательские гранты от международной организации с высоким статусом. Многие члены редакционной коллегии постоянно работают в научно-исследовательских лабораториях для достижения качества и инноваций в исследованиях.

Все международные журналы публикаций Paper выбирают процесс двойного слепого рецензирования. Эта процедура обзора принята, в частности, для поддержания высокого качества публикации исследований во всех журналах.В этом случае автор и рецензент незнакомы друг с другом, поэтому автор защищен от предвзятого отношения к решению о рецензировании. Помимо публикации научно-исследовательской работы, обзорной статьи, письма редактору и краткой заметки; Paper Publication также публикует полные или частичные диссертации, магистерские и дипломные проекты и диссертации.

В целом наш журнал посвящен темам, связанным с медицинскими науками, психологией, ветеринарными науками, здравоохранением, социальными науками, экономикой, социологией, науками о жизни, гуманитарными науками, менеджментом, инженерией и технологиями.У нас тоже есть отдельный сегмент — международный журнал, который занимается междисциплинарными и междисциплинарными областями исследований. Мы постоянно стремимся стать первоклассными поставщиками научных знаний. Мы предоставляем международные журналы с полным открытым доступом для распространения качественных исследований, знаний и образования среди человечества. В бумажном издании приветствуется авторский стиль написания рукописи. Автору предоставляется полная свобода без наложения ограничений на размер статьи или количество страниц.

Что такое пенополистирол или пенополистирол?

EPS (вспененный полистирол) или, как многие знают под торговой маркой The Dow Chemical Company, STYROFOAM, представляет собой чрезвычайно легкий продукт, сделанный из шариков пенополистирола. Пена EPS, впервые обнаруженная Эдуардом Симоном в 1839 году в Германии случайно, на 95% состоит из воздуха и только на 5% из пластика.

Мелкие твердые пластиковые частицы полистирола изготавливаются из мономера стирола. Полистирол обычно представляет собой твердый термопласт при комнатной температуре, который может плавиться при более высокой температуре и повторно затвердевать для желаемых применений.Расширенная версия полистирола примерно в сорок раз превышает объем исходной гранулы полистирола.

Применение полистирола

Пенополистирол используется для различных целей из-за его превосходного набора свойств, включая хорошую теплоизоляцию, хорошие демпфирующие свойства и чрезвычайно легкий вес. Пенополистирол используется в качестве строительных материалов до упаковки из белого пенополистирола, и он имеет широкий спектр конечных применений. Фактически, многие доски для серфинга теперь используют пенополистирол в качестве сердечника.

Строительство и строительство

EPS инертен по своей природе и поэтому не вызывает никаких химических реакций. Поскольку он не привлекает вредителей, его можно легко использовать в строительной отрасли. Это также закрытые ячейки, поэтому при использовании в качестве материала сердцевины он будет поглощать мало воды и, в свою очередь, не будет способствовать образованию плесени или гниению.

EPS прочен, прочен и легок, и его можно использовать в качестве систем теплоизоляции для фасадов, стен, крыш и полов в зданиях, в качестве плавучего материала при строительстве причалов и понтонов, а также в качестве легкого наполнителя в дорожном и железнодорожном строительстве.

Упаковка

EPS обладает амортизирующими свойствами, что делает его идеальным для хранения и транспортировки хрупких предметов, таких как вина, химикаты, электронное оборудование и фармацевтические товары. Его теплоизоляционные и влагостойкие свойства идеально подходят для упаковки приготовленных продуктов, а также скоропортящихся продуктов, таких как морепродукты, фрукты и овощи.

Другое применение

EPS может использоваться в производстве слайдеров, моделей самолетов и даже досок для серфинга из-за его положительного отношения прочности к весу.Прочность EPS наряду с его амортизирующими свойствами делает его эффективным для использования в детских сиденьях и велосипедных шлемах. Он также устойчив к сжатию, что означает, что EPS идеально подходит для штабелирования упаковочных товаров. EPS также применяется в садоводстве в лотках для рассады, чтобы способствовать аэрации почвы.

Почему выгодна EPS?

  • Высокая теплоизоляция
  • Устойчив к влаге
  • Чрезвычайно прочный
  • Легко перерабатывается
  • Универсальный по прочности
  • Легко ламинируется эпоксидной смолой
  • Изготовлены из различных форм, размеров и из компрессионных материалов
  • Легкий и портативный
  • Высокая амортизирующая способность
  • Устойчивость к сжатию
  • Брендирование посредством печати или наклеивания этикеток.

Недостатки EPS

  • Неустойчив к органическим растворителям
  • Не может использоваться в сочетании с гидроизоляционной пленкой MPVC
  • Ранее EPS изготавливали из хлорфторуглеродов, которые повреждали озоновый слой
  • Воспламеняется при масляной окраске
  • Проблемы со здоровьем из-за просачивания химикатов стирола в горячие напитки или пищу, помещенную в чашки из пенополистирола

Переработка EPS

EPS полностью перерабатывается, так как при переработке он становится полистирольным пластиком.Пенополистирол является экологически чистым полимером с самыми высокими показателями переработки любого пластика и незначительной долей городских отходов. Промышленность EPS поощряет переработку упаковочного материала, и многие крупные компании успешно собирают и перерабатывают EPS.

EPS может быть переработан множеством различных способов, таких как термическое уплотнение и сжатие. Его можно повторно использовать в непененых материалах, в легком бетоне, строительных изделиях и обратно в пенополистирол.

Будущее EPS

В связи со значительным количеством применений, EPS используется в результате его превосходного диапазона свойств, будущее отрасли EPS является светлым. EPS — это экономичный и безопасный полимер, который лучше всего подходит для изоляции и упаковки.

EPS против XPS: Судите сами: Plymouth Foam Plymouth Foam

Технология постоянно развивается; есть прорывы и есть проблемы. Поэтому очень важно, чтобы мы в курсе последних новостей от EPS Industry Alliance (EPS-IA).

Ранее в этом году EPS-IA выпустила два новых документа, касающихся поглощения влаги. Как мы уже говорили ранее, проблемы есть в любой сфере. Вы уже догадались: претендент выступил, чтобы обсудить долговечность пенополистирола. Более того, они также заявили, что экструдированный полистирол (XPS) — лучший вариант.

Итак, давайте попробуем разобраться в дискуссии, начав с основ. EPS (вспененный) и XPS (экструдированный) представляют собой жесткую изоляцию с закрытыми ячейками, изготовленную из одних и тех же базовых полистирольных смол и производимые по-разному, EPS — это шарики, которые формуются или нарезаются в различные размеры и формы, а XPS — это экструдированные листы.Во время производства вспениватель EPS покидает шарики довольно быстро, создавая тысячи крошечных ячеек, заполненных воздухом, в то время как вспениватель XPS остается в материале в течение многих лет, тем самым снижая способность переноса воздуха через материал. Для того же листа толщиной 1 дюйм и той же плотности из-за этих различий XPS имеет более низкий рейтинг влагопоглощения, чем EPS.

Когда дело доходит до воды, у вас есть две переменные; абсорбция и удержание. Иногда попадание влаги в строительные материалы неизбежно.Важно оценить характеристики материала при длительном воздействии условий окружающей среды. Изоляционные материалы должны противостоять проникновению влаги, но, что не менее важно, обладать способностью к высыханию для поддержания долгосрочной термической целостности.

Вот где EPS превосходит XPS по долгосрочному показателю R-Value (поддержание климат-контроля в вашем доме или здании). При воздействии экстремальных условий испытания ASTM C1512 (стандартный метод испытаний для характеристики влияния циклического воздействия окружающей среды на тепловые характеристики изоляционных материалов) изоляция из пенополистирола проявляла способность к высыханию в условиях жесткого воздействия, в то время как экструдированный полистирол не проявлял способности к высыханию при воздействии тех же условий.