Вредность минеральной ваты: Влияние минеральной ваты на здоровье

Влияние минеральной ваты на здоровье

Уже достаточно долгое время специалисты спорят о том, насколько вредны минеральная вата и в том, яку вред здоровью она наносить. Или Вредная она Вообще? Здесь важливо учесть, что любой востребованной материал может попасть как в руки специалистов, так и опинитися в дилетантов.

Поэтому может быть, что любая свойство минеральной ваты, була замечена или просто придумана, дальше передавать другим людям и искажалась. Именно так и создаются отзывчивы на ринку строительного материала.

Немного про минеральную вату

Поскольку минеральная вата популярна, ее выпускает большое количество предприятий. И каждое создает свою продукцию, по качественным характеристикам может сильно отличаться от производимой другими компаниями.

В идеале материал, который выпускают ответственные компании, имеет солидные показатели теплопроводности и часто используется для утепления стен дома и кровли. Но некоторые линейки отличаются, при их выпуске могут использоваться другие технологии.

Пользователи, которые видят различные свойства материала, создают различные домыслы и догадки, что и порождает слухи. Они могут быть следующие:

  1. Материал токсичен, может нанести вред человеку, когда будет гореть.
  2. При взаимодействии минваты и воды начинается процесс гниения и появляется плесень.
  3. При использовании минваты в воздух попадают вредные вещества, которые раздражают кожу и слизистую.

Разберем эти мифы подробнее, чтобы выяснить, имеют ли они повод для существования.

В воздух выбрасываются токсичные элементы

Эти слухи можно считать самым популярным, если речь идет вообще о материалах для строительства. Когда будете выбирать утеплитель для дома, услышите о вреде любого, который вам понравится.

Стоит вспомнить, что есть утеплители, вредное воздействие которых был доказан. Это может быть в случае, когда производители использовали некачественное сырье, пользовались при производстве различными химическими добавками. От такого материала пользы не будет точно, а вред может быть.

Но если говорить о качественной минеральной вате, которую выпускают известные производители, вреда она не нанесет. Это гарантирует и технология, которая использовалась при производстве.

Основной аргумент тех, кто утверждает о вреде испарений, базируется на необходимости использования смол фенола и формальдегида при работе с базальтом. И они действительно применяются при создании многих видов минеральной ваты для того, чтобы получить качественный и надежный продукт.

Но фенольные смолы берутся в очень небольшом количестве, поэтому, даже с учетом их вредности, они нанести вред здоровью не могут. В материале максимальное содержание вещества не превышает нескольких процентов.

Есть и такие известные компании, которые совсем отказались от использования вредных веществ, заменив их вязкими компонентами битума и его производных. Именно такая технология изготовления гарантирует полное отсутствие в ней вредных веществ.

Другие мифы

Кроме этого можно услышать и другие мифы, о которых мы писали, и их рассмотрим в другой статье. Но по этому пункту точно можно утверждать, что материал не навредит человеку, если его использовать в качестве утеплителя.

В процессе работы с ней минеральная вата может выбрасывать пыль, но именно поэтому есть специальные костюмы для работы с таким материалом. Возможно, могут возникнуть и другие проблемы, но они очень редки. В основном такая вата абсолютно безопасна: низкое количество химических примесей не может существенно повлиять на окружение, а гидрофобность не даст ей накапливать влагу. Для тех, кто собирается купить минеральную вату, не менее важна и негорючесть.

Но стоит помнить, что все эти характеристики гарантированно есть только в качественной продукции, которую выпускают известные производители.

Вред минеральной ваты для здоровья в строительстве

Содержание

Минеральная вата, такая, например, как плиты Rockwool Wired Mat 80, используется для утепления зданий, несущих конструкций, полов и любых других элементов в доме.

При этом, как у любой другой массовый строительный материал, минеральная вата обрастает множеством мифов и домыслов. В частности, о ее вреде для здоровья человека.

Минеральная вата в виде мягких плит

Но так ли это на самом деле? Попробуем разобраться поподробнее.

1 Мифы и факты

Насколько вредна минеральная вата и есть ли от нее вообще вред для здоровья? На эту тему специалисты спорят уже очень длительное время. Стоит понимать, что каждый материал, будучи крайне популярным, попадает в руки к разным людям.

Не исключено, что кто-то может придумать или действительно отметить какой-то неизвестный факт про ту же минеральную вату, а затем он по цепочке передастся другим людям.

Так образуются мифы о строительных материалах и в частности о утеплителе Изба. Например, очень длительное время по миру ходили мифы о вреде пенополистирола и его почти что убийственном влиянии на человека. Считалось, что пенопласт очень вреден и постоянно выделяет в воздух токсичные отходы, что приводят к появлению болезней.

Совершенно очевидно, что на волне массовой истерии использование такого утеплителя даже немного сократилось. Причем и в капитальном строительстве. Однако ученые доказали, что вред от пенополистирола если и есть, то только от плохо обработанных образцов и в крайне малых количествах.

Аналогичная ситуация происходит и с минеральной ватой. Она точно так же является крайне популярным материалом. Выпуском минваты занимается огромное количество компаний. В том числе компании ТехноНиколь, Knauf, Роквул и т.д.

Причем каждая компания имеет свои линейки продукции, что отличается от других определенными характеристиками. Например, линейка Insulation от фирмы Knauf и каменная теплоизоляция Изобокс.

Knauf Insulation используется для утепления стен и кровли дома, а потому имеет среднюю плотность и отличные показатели теплопроводности. В то же время другие линейки от Knauf имеют особенные свойства, и даже могут выпускаться по другим технологиям.

Все это разнообразие приводит к образованию большого количества домыслов, догадок и мифов. Таких как:

  • Минвата вредит человеку за счет выделений токсичных веществ.
  • Материал вредит человеку не просто так, а при горении.
  • Минеральная вата гниет от контакта с водой и начинает плесневеть.
  • Минвата пылит вредной пылью, что раздражает кожу и т.д.

Минеральная вата в рулонах

Таких догадок есть великое множество. Мы же сейчас постараемся отделить зерна от плевел и понять, какие мифы правдивы, а какие нет.

к меню ↑

1.1 Вредные выбросы в воздух

Интересно, что миф о вредных выбросах в воздух – это едва ли не самый популярный миф о строительных материалах вообще, поэтому речь не только прошивных матах из минеральной ваты. Какой тип утеплителя вы не будете использовать в строительстве, в любом случае вы можете где-то услышать про вред, который он наносит окружающей среде.

И действительно, вредность некоторых утеплительных материалов и вправду доказана. Если производили их из некачественной продукции и сырья, применяя различные химические добавки, то вред от такого утеплителя действительно может иметь место.

Однако с минеральной ватой дела обстоят немного по-другому. Если говорить о фирменной минвате, например Knauf Insulation и т.д, то вреда от нее нет.

Это объясняется особенной технологией ее производства. Главный аргумент сторонников теории о вредных испарениях от ваты заключается в том, что при связке волокон базальта в работе необходимо использовать фенольные и формальдегидные смолы.

И это действительно так. Во множестве видов минеральной ваты используют такие добавки, чтобы минимизировать проблемы при производстве и иметь возможность создать действительно качественный устойчивый материал.

Но тут важно понимать, что используют смолы фенола в очень небольших количествах, настолько малых, что они, даже будучи вредными, не способны наносить вред человеку и его здоровью. Просто потому что их содержание в плите равняется одному или нескольким процентам.

Но некоторые популярные производители, тот же Knauf к примеру, пошли еще дальше. Они вообще отказались от смол фенола, занимаясь производством отдельных линеек минваты, что создаются на вяжущих из битума или его производных. Так, минвата Knauf Insulation производится именно по вышеописанной технологии.

к меню ↑

1.2 Выделение пыли в воздух

Монтировать стекловату можно только в полной защитной экипировке

Еще один популярный миф – выделение минеральной ватой большого количества пыли, что наносит вред человеку, вызывает раздражения, забивает легкие и т.д.

Корни этого мифа уходят в прошлое. Раньше, еще во времена СССР, на строительстве тоже пользовались утеплителями. Не в столь обширных количествах, но их применение все равно было востребовано. В особенности в зонах с холодным климатом. Там одними толстыми бетонными стенами не отделаешься.

Однако в работе для утепления использовалась преимущественно не минеральная вата, а стекловата. И тут надо очень четко разграничивать особенность того и другого материала. Стекловата действительно очень похожа на обычную минеральную. Он и отличий у нее хватает.

Если минеральная вата и базальтовый утеплитель производится из базальтовой породы (как современная продукция Knauf Insulation, Роквул Баттс, Технониколь и т.д.), то стекловата производится из битого стекла и отходов стекольной промышленности.

Обрабатывают их по схожей технологии, что выглядит следующим образом:

  • Подготовка сырья;
  • Заправка его в печь;
  • Переплавка;
  • Добавление химических веществ для образования волокон;
  • Получение готового материала.

Вот только разница в изначальном сырье очень большая, что приводит к разнице в результатах.

Стекловата, в отличие от минваты, в своих волокнах все же имеет кристаллизованное стекло. В случае серьезного на нее давления, стекло разрушается, высвобождая в воздух микроскопические частицы стекла и пыли.

Эта пыль может наносить серьезный вред человеку. Причем вред вполне реальный, а не вымышленный. Кожа от контакта с пылью раздражается, и расчесывать ее нельзя, так как это приведет к углублению пыли.

Попадание на слизистую человека тоже действует не лучшим образом. В частности, серьезный вред наносится глазам. Ну и самое главное – влияние стекольной пыли на легкие человека.

Она может приводить к очень неприятным последствиям, включая появление различного рода болезней.

С минватой можно работать вообще без защиты, она почти не пылит

Но все эти симптомы относятся к применению стекловаты. Минеральная вата же с подобными проблемами не сталкивается. Она тоже может пылить, но пыль эта ничем не отличается от обычной, а значит и вреда человеку не наносит.

К тому же фирменная вата от Knauf и утеплителя Эковер, Роквул и других подобных компаний специально обрабатывается дорогостоящими составами, чтобы минимизировать появление пыли вообще.

Подпитка же влияния мифа заключается в том что люди, не будучи специалистами, часто путают стекловату и минвату, приписывая свойства одного материала к другому.

к меню ↑

1.3 Вред при горении

О вреде от возгорания различного рода утеплительных материалов слухи ходят постоянно и довольно давно. Да что там говорить, некоторое время всерьез считалось, что вредит здоровью человека даже горящий клееный брус, так как его склеивают химическими составами.

Упустим тот факт, что сама мать природа позаботилась о том, что при горении любой предмет или материал выделяет в атмосферу вредные газы, в частности, огромное количество углекислого газа.

Отметим только, что вреда от горения минеральной ваты нет совершенно. А знаете почему? Да потому что она попросту не может гореть.

Современная минеральная вата производится из базальта, а это на минуточку, камень. Соответственно каменной ее и называют. Сам по себе камень гореть не может, не могут гореть и его производные.

Все это подтверждено многочисленными исследованиями ученых и даже самих компаний, что занимаются производством минваты в промышленных количествах.

Доказано, что даже если направить на плиту или рулон горящую газовую горелку, то утеплитель может обуглиться и немного почернеть. Но только в месте прямого и длительного контакта с огнем.

Возгорания же или его разрушения не происходит, а потому и миф о выбрасывании вредных веществ в атмосферу при горении тоже можно развенчивать.

к меню ↑

1.4 Вред от контакта с влагой

Остается еще один популярный миф, что касается подверженности минеральных утеплителей контакту с влагой, а также ее накоплению. Что в итоге может привести к появлению плесени или гниению материала.

Фирменная минвата имеет крайне низкий показатель водопоглощения

Тут уже доля правды имеется. Причем довольно большая. Минвата, особенно производимая по древней технологии, действительно подвержена негативной реакции на влагу.

При длительном пропускании влажного пара или непосредственном контакте с водой она может накапливать в себе жидкость в виде конденсата.

В итоге все это реально приводит к образованию грибков и плесени. А те уже, в свою очередь, способны выделять в воздух свои споры, если обстановка и все условия сложатся так, чтобы стимулировать их развитие.

Но современная минеральная вата, в частности, продукция компании Knauf, Роквул и т.д. имеет очень низкий коэффициент водопоглощения, поэтому и такая проблема здесь почти полностью нивелируется.

к меню ↑

2 Так вредит минвата здоровью или нет?

После всего вышесказанного можно с уверенностью сказать, что минеральная вата не вредит здоровью человека в серьезной мере. Да, она может пылить во время монтажа, и даже может стать домом для плесени.

Но все это бывает только в крайнем случае. В обычных же условиях она совершенно безвредна.

Содержание химических веществ в материале слишком низкое, чтобы как-то влиять на окружающую обстановку, гидрофобность не дает случайным событиям способствовать накоплению влаги, а негорючесть играет свою, не менее важную роль. Отметим однако, что все это касается только фирменной продукции.

к меню ↑

2.1 Производство и свойства минеральной ваты (видео)

Вредна ли минеральная вата для здоровья — Remontami.ru

Про опасность минеральной ваты в качестве утеплителя для стен, крыши или пола мнения разделились. Производители со своей стороны утверждают о полной экологичности материалов и предлагают подтвердить слова сертификатами, эксперты и медики считают воздействие на здоровье утеплителя сомнительным, если не сказать больше — негативным.

Что остается пользователям? Главное — проанализировать мнения тех и других и сделать выводы о том, какую минеральную вату покупать, как правильно ее использовать, чтобы не нанести вреда здоровью и что нужно знать о выборе и составах утеплителей.

Мнения экспертов о составе утеплителя

Производители теплоизоляции на основе минеральной ваты, не устают повторять о ничтожно малом проценте содержания в утеплителе действительно способных нанести вред здоровью фенолформальдегидных связующих компонентах, напоминая, что в связанном состоянии, то есть после полимеризации, они не опасны, особенно, если соблюдать рекомендации в отношении монтажа и эксплуатации.

Утверждения авторов продукции до конца правдивыми не считают эксперты, в том числе и из службы Роспотренадзора. Представители организации к утеплителю из минваты относятся с осторожностью, напоминая, что об отсутствии вреда для здоровья можно говорить только при соблюдении всех правил в процессе изготовления материала. Даже незначительные отклонения от технологии и тем более ошибки, допущенные во время монтажа могут привести к негативным последствиям.

Своевременно определить нанесение вреда для здоровья сможет каждый, кто заехал в жилье, утепленное минеральной ватой по появившимся головным болям, перепадам давления и общему недомоганию. Элементарная проверка помещений, вызывающих подобные проблемы со здоровьем и самочувствием, в 9 случаях из 10 показывает, что причиной стали нарушения технологии производства и монтажа утеплителя.

Медики уверены, что фенол (неизменный компонент утеплителя на основе минеральной ваты) — вещество, с высокой скоростью проникающий в кожу, попадая в организм активно воздействует на мозг. Даже минимальные отравления фенолом способны вызывать:

  • упадок сил;
  • кашель;
  • тошноту;
  • головные боли;
  • скачки давления и пр.

Значительные дозы отравляющих веществ, попадающие в организм человека из утеплителя на минеральной вате, приведут к обморочным состояниям, могут вызвать судороги, потерю чувствительности роговицы, а со временем даже стать причиной развития онкологии. Чем дольше человек подвержен влиянию фенола, тем больший вред вещество нанесет организму.

Еще одна составляющая утеплителя в основе с минеральной ватой — формальдегид не менее опасный для здоровья. Согласно проведенным исследованиям, эксперты сделали заключение о 0,02 мг выделяемого вещества на метр квадратный в час.

В помещении с утеплителем из минваты помимо него достаточно других источников токсинов, не говоря уже о проникающих извне вредных частицах вместе с воздухом через окна, щели и двери. Результатом становится значительное превышение допустимой безопасной нормы токсинов и ощутимый вред для здоровья.

В совокупности частицы грязи, пыли, фенолы представляют реальную угрозу для здоровья и даже жизни человека в буквальном смысле убивая правильные микроорганизмы. Итог — нарушение биоценоза с последующими воспалительными процессами и вытекающими из этого проблемами — бесплодием, пороками у новорожденных, перинатальной смертностью и пр.

Утеплители на основе минеральной ваты, о вреде которой уверяют эксперты, купить без каких-либо проблем можно где угодно. Российские рынке переполнены материалами как в бюджетном варианте, так и более дорогими марками премиум-класса. Материал повсеместно используется в строительстве и ремонте для утепления не только стен и крыши, но и:

  • пола;
  • фасадов;
  • мансард;
  • лоджий;
  • подвалов;
  • чердаков и т.д.

Производители из стран Европы и СНГ предлагают продукцию в широком ассортименте с дополнительными слоями из алюминиевой фольги для утепления и звукоизоляции в виде плит, рулонов и даже матов с разными показателями толщины, длины и ширины. Между тем многие как российские, так и зарубежные компании принимают решение не использовать утеплители из минеральной ваты, считая материал одним из источников вреда для здоровья.

Насколько оправданы их опасения? Стоит проанализировать результаты недавней экологической экспертизы в Подмосковье, чтобы задуматься о том, насколько вредна теплоизоляция такого плана.

В рамках исследований эксперты в непосредственной близости от завода по производству утеплителя констатировали скопление неприятного резкого запаха. Впечатление усугубили результаты, полученные в результате замеров почвы и воздуха вблизи завода — в них обнаружили высокий процент токсичного фенола.

Эксперты утверждают, что отдельные виды изоляторов на основе минеральной ваты являются главным источником ядовитого запаха, аналогичного запаху аммиака. Именно этим обусловлено требование к работникам производства регулярно проходить медицинский осмотр у окулиста, отоларинголога, пульмонолога и дерматолога.

Работники заводов, не соблюдающие правила безопасности в полной мере, не застрахованы от дерматита, фарингита, ринита, ларингита и прочих болезней, связанных с дыхательными путями и воспалительными процессами.

На территории США и ряда европейских стран в рамках изучения вреда минеральной ваты для здоровья был проведен анализ смертности среди работников заводов по изготовлению материала. Результаты оказались ошарашивающими — чем больше стаж работы у сотрудника компании, тем больше вероятности обнаружения у него рака легких.

Закономерность подтверждают и врачи-пульмонологи. Медики уверены в наносимом вреде здоровью минеральными ватами и проводят параллель между дозировками фенола и развитием онкологических заболеваний.

Характеристики материала и их влияние на здоровье

Врачи утверждают, что частицы, попадающие в воздух после старения и разрушения минеральной ваты в ходе продолжительной эксплуатации или несоблюдения правил использования, неизменно оседают в легких людей, находящихся в зоне их распространения, вызывая заболевания легких, а со временем и развитие онкологии.

Насколько вредна минвата — во многом это зависит от размера и формы минеральных волокон. Считается, что самые опасные — это волокна толщиной до 3 микрон и длиной свыше 5 микрон.

Ухудшает ситуацию и способность материала впитывать влагу. Эксплуатация утеплителя на базе минеральной ваты в регионах с повышенным уровнем влажности и температурными скачками приведет к преждевременной потери им теплоизоляционных качеств, а следом и повреждению структуры волокон, часть которых проникнет вовнутрь помещения, отравляя воздух.

Последние исследования лишь подтвердили тот факт, что под влиянием сложных атмосферных условий утеплители на основе минеральной ваты теряют в весе. Чем дольше служит материал, подвергаясь ежедневным испытаниям влагой, ветром и температурами, тем быстрее он теряет изначальный функционал.

Еще одна проблема — благоприятная для заселения грызунов, плесени и грибков среда в середине утеплителя из минеральной ваты. Такое соседство нанесет ощутимый вред здоровью, нарушит режим покоя и уюта в доме.

Производители минваты делают ставку на принадлежности материала к группе негорючих, считая это бесспорным достоинством. Но на практике оказывается, что именно это свойство может стать причиной нанесения непоправимого вреда для здоровья.

Включенные в состав легко воспламеняемые формальдегидные смолы и ряд связующих веществ не только вредны, они не смогут противостоять пламени, так же, как и применяемые для снижения влаговпитываемости вещества. Практика показывает, что утеплители из минваты горят не хуже соломы, дополнительно питают пламя потоки кислорода между волокнами материала.

Насколько вышеприведённые факторы имеют значение и стоит ли их иметь ввиду при выборе утеплителя? Каждый вправе принимать решение самостоятельно. Остается отметить, что делая выбор в пользу минеральной ваты для теплоизоляции, нельзя экономить на качестве. Продукция должна быть сертифицированной, протестированной, от компании с проверенной репутацией. Не менее важный пункт — соблюдение правил монтажа с использованием защитных средств и эксплуатации — со своевременной заменой утеплителя по мере износа.

Так ли вредна современная базальтовая вата для здоровья

Ноябрь 03, 2016

Такой натуральный теплоизоляционный материал, как маты каменной ваты изготавливают путём расплавления специальных горных пород и последующего склеивания полученных волокон. Базальт представляет собой застывшую на поверхности земли магму. Заметим, что подобное вещество состоит из многих горных пород.

Основными положительными характеристиками базальтовой ваты считается высокая устойчивость к горению, невысокий коэффициент теплопроводности, хорошие теплоизоляционные показатели. Эта информация тщательно маскируется производителями, но у описываемых изделий есть одно негативное качество – это вред для человека.

Насколько вредна каменная вата, изготовленная по современным технологиям

Для многих потребителей экологическая безопасность строительных материалов, в том числе и утеплителей, считается решающим параметром выбора. В нашей статье ознакомимся с возможными рисками, которые могут возникнуть при эксплуатации базальтовой ваты. Актуальность подобного вопроса связана с популярностью утеплителя у конечных потребителей. Несмотря на хорошие теплоизоляционные показатели, плиты утеплителя могут использоваться в качестве звукоизоляции при проектировании и строительстве квартир и частных зданий.

Как можно понять, с утеплителем будет контактировать много работников и жителей дома (при повреждении отделки), поэтому поражение может принимать массовый характер. По мнению многих экспертов, несмотря на наносимый вред, минеральная вата имеет определённые показатели экологичности. Подобные выводы подтверждаются при сравнении описываемых изделий со стекловатой, которая активно использовалась для утепления зданий каких-то 20-30 лет назад.

Здесь нужно обратить внимание на один важный нюанс – это качество сырья и соблюдение технологии изготовления материала. Показатели вредности резко повышаются в дешёвых изделиях. Такой утеплитель получают с нарушением технологии или с некачественного сырья. Качественная базальтовая вата будет отличаться от аналогов следующими техническими характеристиками:

  • небольшая теплопроводность;
  • устойчивость к воздействию открытого огня;
  • продолжительный период эксплуатации;
  • возможность поглощать посторонние звуки.

Кроме использования дешёвого утеплителя определённый вред можно получить при несоблюдении простых мер безопасности. Дело в том, что при укладке матов теплоизоляции строители контактируют с веществом постоянно. Следует заметить, что плиты подобных изделий имеют ограниченный запас прочности. Под воздействием небольших усилий со стороны рабочих происходит разрушение волокон. В данном случае мельчайшие частицы теплоизоляции попадают под складки спецодежды, проникают в дыхательные пути человека. После этого происходит следующее:

  • зуд на коже;
  • поражение дыхательных путей;
  • возможность появления онкологических заболеваний;
  • раздражение слизистой оболочки глаза;
  • отдельный вред организму приносят фенольные смолы. Много таких веществ содержится в теплоизоляции под названием Изобокс.

По мнению экспертов, высококачественная каменная вата с достаточной плотностью, для скрепления волокон которой использовался натуральный клей, не смогут принести вреда. Особо прочные материалы не будут разрушаться под нагрузкой, поэтому их мельчайшие частицы не попадут на кожу и не проникнут в лёгкие человека.

При изучении описанной информации можно придти к простому выводу, что каменная вата, произведённая без соблюдения стандартов, кустарным способом оказывает вредное влияние на организм человека. В связи с этим необходимо покупать только качественный утеплитель, имеющий соответствующие сертификаты и другие сопровождающие документы.

Вред от попадания волокон утеплителя в дыхательную систему

Многие считают, что попадание частиц базальтовой ваты в лёгкие принесёт непоправимый вред здоровью человека. Далее рассмотрим, так ли это на самом деле. Подобное утверждение может быть справедливым, а особенно если проводятся работы с утеплителем низкого качества. При минимальных показателях прочности при малейшем усилии структура матов начинает разрушаться, освобождаются мельчайшие волокна и воздух насыщается вредоносными частицами.

При защите материала отделочным слоем, а также в случаях, когда базальтовая вата находится за пределами дома, подобные изделия не причинят вреда здоровью человека. Но здесь есть одно но, при вдыхании воздуха рядом с утеплителем в организме будут накапливаться частицы волокна. В результате подобного воздействия в человека образуются кисты, которые являются очагом развития вредоносных бактерий. При появлении так называемых трематод в организме могут появиться злокачественные опухоли (онкология).

В некоторых людей диагностировались опухоли в лёгких, появление которых врачи связывают с вдыханием азбеста или минеральной ваты. Частицы указанных материалов имеют микроскопические размеры, они острые. При вдыхании подобные вещества проходят сквозь крупные трубки и оседают на мелких сосудах, что приводит к хроническим повреждениям и дефиците ферментов. Через игольчатую структуру мелких частиц в лёгких появляются небольшие ранки, которые со временем превращаются в рубцы. В дальнейшем участки с рубцами превращаются в опухли. Современные утеплители, произведённые по требованиям государственных стандартов, имеют достаточную прочность и хорошую связку волокон, что препятствует попаданию мелких частиц в лёгкие человека.

Какой вред человеку приносят испарения соединяющих веществ

При изготовлении базальтовой ваты для связки отдельных волокон используются такие опасные вещества как фенол и формальдегид. Как утверждают эксперты, подобные ингредиенты могут представлять опасность для человека, а особенно при несоблюдении условий производства материала. При соблюдении технологии работ и использовании высококачественного сырья никакого вреда от теплоизоляции не будет. Дело в том, что подобные изделия также связываются при помощи формальдегидных смол, но указанные компоненты находятся в связном состоянии.

В тех случаях, когда каменная вата производилась кустарным способом, без соблюдения каких либо стандартов из низкосортного сырья, то полученная продукция не будет соответствовать установленным стандартам качества. В составе такого материала в любом случае будут присутствовать вредоносные добавки.

Безопасность работ и оказание первой помощи при отравлении базальтовой ватой

При укладке плит утеплителя нужно непрекословно придерживаться правил техники безопасности. Во время попадания мелких частиц утеплителя на незащищённую кожу человека возникает чесотка, покраснение и зуд. Острые, мельчайшие частицы волокон попадают в микропоры и трещины и остаются там.

Микрочастицы могут проникать и в лёгкие, там они оседают, что часто приводит к серьёзным заболеваниям органов дыхания. Чтоб предотвратить негативное воздействие материала на организм человека используют следующие защитные средства:

  • специальные очки;
  • прорезиненные перчатки;
  • респиратор;
  • спецодежда.

Важно: после проведения утеплительных работ спецодежду выбрасывают, она непригодна для дальнейшего использования.

При случайном попадании волокон на незащищённые участки кожи не нужно чесаться, ведь это приведёт к проникновению материала вглубь пор. Если микрочастицы попали на волосяной покров нужно аккуратно встряхнуть голову над ванной и слить воду, но смывать сам утеплитель не рекомендовано. При встряхивании желательно плотно сомкнуть глаза. После этого можно принять ванну с сильным напором холодной воды без использования моющих средств. Использовать полотенце или мочалку, включать горячую воду также запрещено.

После холодно душа вода в ванне должна стечь, а тело человека полностью высохнуть. Далее моются обычным способом с использованием мыла. Микрочастицы, попавшие в глаза, тоже смывают струёй холодной воды под напором. При попадании волокон утеплителя в лёгкие, в человека возникает хронический кашель. В подобном случае необходимо обратиться к врачу.

Можно купить много разных утеплителей, но при подборе подобного материала спрашивайте у продавца сертификаты качества на выпускаемую продукцию, а также пользуйтесь защитными средствами и соблюдайте меры безопасности при монтаже.

Базальтовая вата вредна для здоровья или нет?

Базальтовая вата – материал, который часто используют в качестве утеплителя. По своим теплосберегающим свойствам он является наилучшим вариантом среди строительных материалов: формирует воздушную прослойку, не отсыревает, отличается долговечностью. Но существует распространенное мнение, что базальтовая вата вредна для здоровья. Требуется узнать, так ли это в действительности.

Базальт — натуральней не придумаешь

Для производства минеральной ваты расплавляют и измельчают горную породу. Этот материал также называют каменной ватой, поскольку в действительности она произведена из камня.   Чаще всего используют базальт-магматическую породу, которая является экологически чистой и даже используется в медицине. Таким образом, основа утеплителя безвредна для человека.

Затем для скрепления полученных волокон между собой используют смолу. От состава последней зависит, приносит ли минеральная вата вред организму. Какой тип этого вещества применять, решает производитель.

Некоторые смолы не содержат в своем составе вредных компонентов, и тогда материал является практически безвредным. Но иногда в состав добавляются фенол и формальдегид – вредные для здоровья компоненты.

Вред для здоровья микрочастиц минеральной ваты

Считается, что максимальный вред организму наносится при вдыхании волокон минерального утеплителя. Это правда: попадание микрочастиц базальта и смолы в легкие не принесет ничего хорошего. При разрезании минерального утеплителя во время строительных работ высвобождается мелкая пыль, поэтому работать следует в марлевой повязке.

Но когда утеплитель уже уложен на место, он не производит пыль сам по себе. Кроме того, в большинстве случаев материал закрывают пленкой для повышения теплоизоляционных свойств и гидроизоляции. Таким образом обеспечивается безопасность минваты.

Существует минеральный утеплитель последнего поколения, который не колется и почти не создает пыли. Причина заключается в эластичности акрила, содержащегося в его составе: связанные этим материалом волокна не обламываются и не разлетаются в виде микрочастиц. Это не единственное преимущество материала, он обладает улучшенными звукоизоляционными характеристиками также благодаря акрилу, который более эффективно поглощает звуковые волны. Таким образом, существует возможность полностью избежать появления пыли при использовании минерального утеплителя.

Формальдегидные смолы

Многие хотят знать, вредна ли минеральная вата, в составе которой содержатся формальдегидные смолы. Количество смолы в любом базальтовом утеплителе составляет 2-3%. В данной субстанции содержится совсем небольшое количество формальдегида. Таким образом, в минеральном утеплителе находится минимальное количество веществ, влияющих на здоровье.

Если же необходимо полностью исключить вред минваты, обратите внимание на производителей, которые не используют в производстве вредные вещества.

При укладке утеплителя закройте его пленкой и тщательно заклейте швы, чтобы избежать пыли. Такая минеральная вата на вредна для здоровья.

Огнеопасна ли минеральная вата

Среди самых полезных свойств минваты – ее пожароустойчивость. Поскольку этот материал является измельченным камнем, он не горит даже под воздействием открытого огня. Соответственно, он не выделяет вредных веществ под влиянием высокой температуры, в отличие от пластика и других утеплителей.

Вредна ли во время монтажа

Часто упоминают вред минеральной ваты во время монтажных работ. Если брать этот материал голыми руками, то мельчайшие острые волокна могут впиваться в кожу и вызывать раздражение. Поэтому работать с ним следует только в перчатках.

Тем не менее, если каменная вата попадет на руки без перчаток, ничего страшного не будет. Нужно только тщательно вымыть ладони прохладной водой (чтобы не расширялись поры), а затем собрать все волокна с кожи вручную. Опытные монтажники используют для удаления этих частиц малярный скотч, прикладывая его клейкой стороной к тем участкам кожи, которые соприкасались с минватой.

Во время работы с базальтовым утеплителем рекомендуется использовать марлевую повязку или хотя бы платок, чтобы прикрыть органы дыхания. Особенно это касается моментов, когда приходится резать минвату. При установке пленки для теплоизоляции вредность отсутствует, поэтому марлевую повязку можно снять.

Минеральный утеплитель с акрилом в составе не приносит вреда. Кроме того, он обладает повышенной упругостью. При установке внутри сооружений возникает “эффект пружины” и утеплитель заполняет все отведенное пространство, не оставляя щелей и зазоров. Дополнительная защита от разлетания пыли не требуется.

Правильная утилизация

Утилизация минеральной ваты – сложный процесс. Этот материал не горит, а в природе разлагается многие десятилетия. Поэтому его необходимо отдавать на переработку, особенно если это базальтовая вата, вред здоровью оказывающая и содержащая формальдегид и фенол в своем составе. Если просто выбросить ее на мусорный полигон, вредные вещества попадут в окружающую среду и вернутся к человеку, негативно воздействуя на воздух и воду.

Ursa Pure One

Минеральная вата Ursa Pureone имеет наилучшие теплоизоляционные свойства. При этом она является экологически чистой, не содержит в своем составе никаких вредных веществ. Применение фенола и формальдегида при производстве полностью исключено. Это материал последнего поколения, отличающийся от простой минваты даже внешним видом: он белого цвета, напоминает хлопок или овечью шерсть.

Вместо базальта используется кварцевый песок, чем обусловлен белый цвет материала. В качестве соединяющего компонента вместо смолы берут акрил – безопасное полимерное вещество.

Вредность базальтовой ваты

Базальтовая вата – это теплоизоляционный материал, для изготовления которого используются базальтовые горные породы. Базальт представляет собой магму, застывшую на поверхности земли, состоящую из разных горных пород. Сегодня очень распространено утепление базальтовой ватой, так как она не горит, имеет низкую теплопроводность, обеспечивает высокий уровень теплоизоляции. Также не менее важным фактором, который влияет на выбор именно этого материала, является доступность цены. Кроме этого следует отметить, что он оправдывает соотношение цены и качества

Экологичность материала

Базальтовая вата в отличие от асбеста не приносит вреда. Это обеспечивается при соблюдении технологий производства и монтажа. На данный момент минеральная вата считается утеплителем номер один в мире.

В последние годы обострился вопрос экологии. Многие люди заинтересовались безопасностью использования тех или иных теплоизоляционных материалов. Каменная вата – не исключение. Естественно, производители единогласно заявляют о безопасности использования материала. Но действительно ли это так. Попробуем разобраться, наносит ли базальтовая вата вред здоровью человека и окружающей среде? Несмотря на положительные отзывы о каменной вате, этот вопрос интересует многих, так как данный теплоизоляционный материал пользуется большой популярностью среди населения нашей страны, особенно для строительства и утепления жилых помещений и административных зданий. Каждый желает жить и работать в безопасных условиях.

В этой статье постараемся рассмотреть все вопросы, тем или иным образом связанные с опасностями, которые возможны при использовании каменной ваты в качестве теплоизоляционного материала для утепления жилых домов.

Попадание волокон каменной ваты в легкие человека

Многие считают, что волокна каменной ваты способны наносить вред легким человека. В основном этот миф связан с визуальным сходством данного материала со стекловатой, хорошо известной нам еще в советское время. Стекловата имеет превосходные эксплуатационные показатели (высокие тепло- и звукоизоляционные свойства, негорючесть), но она действительно при монтаже наносила вред здоровью строителей, которые постоянно работали с ней. Это объясняется тем, что стекловата имеет низкую прочность, поэтому ее волокна легко отделяются от общей массы, что могло привести к их попаданию на кожу и в легкие человека. Более подробно о свойствах материала читайте здесь.

Современная базальтовая вата сохраняет в себе отличные эксплуатационные характеристики своего предшественника – стекловаты (высокая теплоизоляция, звукопоглощение, негорючесть). В то же время практически полностью исключается возможность попадания волокон, из которых сделан материал в легкие и на кожу человека, так как отличается более прочной структурой. Это высококачественный материал с большой плотностью и прочностными характеристиками. Вы можете быть уверены, что при использовании базальтовой ваты проверенных производителей волокна не будут отделены и, соответственно, не проникнут в легкие рабочих и жителей утепленного помещения.

Вредные испарения, исходящие от соединяющих веществ

Данный миф основан на технологическом процессе изготовления каменной ваты. Во время производства материала используются смолы, содержащие в себе такие опасные соединения, как фенол и формальдегид. Они используются в качестве связующего вещества. Небольшая доля правды в этом есть, так как фенолформальдегидные смолы действительно опасны для здоровья человека.

Если при производстве каменной ваты был соблюден весь технологический процесс, использовалось исключительно высококачественное сырье, в готовом теплоизоляторе фенолформальдегидные смолы остаются, только в связанном состоянии. Они являются нейтральными по отношению к окружающей среде. Это значит, что качественная каменная вата не вредна ни для здоровья людей, ни для окружающей среды.

Естественно, сейчас речь идет не о каменной вате, произведенной кустарным образом. Обычно при таком способе изготовления используется некачественное дешевое сырье. На рынок поступает теплоизоляционный материал, который не соответствует санитарным нормам, так как содержит в себе вредные примеси. Именно такой утеплитель может нанести существенный вред здоровью человека.

Необходимо быть осторожным при выборе каменной ваты. Покупайте материал только проверенных производителей, зарекомендовавших себя на строительном рынке с положительной стороны. Они используют для изготовления материала высококачественное сырье, соблюдают все нормы и требования производства, поставляют только сертифицированную продукцию. Так вы будете уверены, что теплоизоляционный материал, используемый для утепления дома, не нанесет вреда ни вам, ни вашим близким. Поэтому для теплоизоляции помещений выбирайте базальтовый утеплитель. В вашем доме всегда будет комфортно, тепло и уютно, к тому же это экологичный утеплитель.

Каталоги продукции и инструкции по монтажу ведущих производителей

Изовер

Каталог ISOVER ВентФасад

Каталог ISOVER Классик Плюс

Каталог ISOVER Классик

Каталог продукции ISOVER для Сауны

Каталог продукции ISOVER СкатнаяКровля

Каталог продукции ISOVER ШтукатурныйФасад

Инструкция по монтажу фасадной теплоизоляции

Каталог продукции ISOVER на основе каменного волокна

Каталог продукции ISOVER на основе стекловолокна

Утепление скатных кровель и мансард

Кнауф

Инструкция по монтажу теплоизоляции «Вентилируемый фасад»

Инструкция по монтажу системы теплоизоляции «Скатная кровля»

Каталог профессиональных решений по тепловой, пожарной и звуковой защите зданий

Натуральный утеплитель для частного домостроения, каталог продукции

Новое поколение натуральных безопасных утеплителей от Кнауф

Ursa

URSA теплоизоляция из минерального волокна

Каталог утеплителей Урса – Скатные крыши

Каталог утеплителей Урса – Плоские крыши

Каталог утеплителей Урса – Навесные вентилируемые фасады

Каталог утеплителей Урса – Полы и перекрытия

Каталог утеплителей Урса – Перегородки

Каталог утеплителей Урса – Штукатурные фасады

Каталог утеплителей Урса – Трехслойные наружные стены из камней, блоков и жел

Каталог утеплителей Урса – Каркасные стены и стены из сэндвич-панелей

Каталог утеплителей Урса – Стены подвалов и фундаменты

Видео про вредность минеральной ваты

«Ядовитая пыль» или несколько слов о вреде утеплителей из минеральной ваты | Стройматериалы и технологии

Действительно ли минеральная вата является экологичным строительным материалом? Может ли ее использование в качестве утеплителя нанаести вред нашему здоровью?

Сезон строительства в самом разгаре и именно сейчас время закупаться строительными материалами, тем более, что самоизоляция подходит к концу, и все больше магазинов возвращаются к работе.

Сегодня я хочу поговорить об экологичности строительных материалов, а конкретно о такой важной вещи, как теплоизоляция. Наиболее часто в качестве утеплителя используется минеральная вата. Этот материал считают экологичным, поскольку он производится из натурального сырья. Но так ли это на самом деле? Давайте разберемся.





Вам наверняка приходилось использовать минеральную вату в качестве утеплителя. И если вы имели опыт работы с ней, то видели, как с нее осыпаются ворсинки и пыль, притом в немалом количестве.

Именно поэтому при работе с минватой, опытные строители всегда используют перчатки, респираторы и защитные очки. Собственно, эти правила продиктованы стандартами работы: ГОСТ 4640 и ГОСТ 9573. Хотя даже без них любой, кто имел дело с минеральной ватой быстро поймет, что средства защиты — необходимы. Частицы волокон впиваются в кожу, попадают в дыхательные пути и глаза, вызывая зуд и раздражение.

Частицы минеральной ваты размерами 2,5 и 10 микрон, возникающие в воздухе рабочей зоны в ходе работ по утеплению фасадов изучали специалисты Петербургского государственного университета путей сообщения (ПГУПС). Результаты этой исследовательской работы ученые описали в статье «Оценка риска ущерба для здоровья при воздействии мелкодисперсной пыли минеральной ваты», опубликованной в «Казанском медицинском журнале», том 95, № 4 за 2014 год.

Так, было выяснено, что в процессе работ содержание данных частиц в четыре раза превышает нормы ПДК.

И хотя производители минеральной ваты презентуют ее, как натуральный строительный материал, поскольку она изготавливается из расплавов горных пород таких как базальт, известняк и другие, стоит знать, что в состав этих пород входят оксиды алюминия, железа, калия, кальция и т.п. Проникая в организм в виде пыли, они оказывают фиброгенное воздействие, проще говоря, приводят к возникновению пневмофиброза — заменяя здоровую легочную ткань на рубцовую. При этом, тяжелая форма пневмофиброза опаснее рака, поскольку — неизлечима.

Кроме того, в ходе изготовления минваты, используются различного рода отходы металлургического производства такие как шихта, шлаки и другие. Таким образом, в составе минеральной ваты оказываются тяжелые металлы. По утверждению сотрудников ПГУПС, попадание тяжелых металлов в организм человека может вызывать проблемы с сердечно-сосудистой системой.

Как показало вышеупомянутое исследование, риск возникновения серьезных заболеваний связан со стажем работы строителей, регулярно взаимодействующих с минеральной ватой. Так, спустя четыре года работы, риск утраты здоровья — высок, а через четырнадцать лет — крайне высок. Рабочие, регулярно взаимодействующие с минватой, имеют риск получить заболевание сердца и сосудов задолго до выхода на пенсию.

А теперь давайте подумаем: проще ли живется потребителю минеральной ваты?
Ведь он не участвует в ремонтно-строительных работах, но получает готовый результат, а минвата скрыта за слоем отделочных материалов. Тем не менее даже в этом случае негативных последствий для здоровья не избежать. Мельчайшие частички минеральной ваты, размером от двух до десяти микрон, всегда найдут себе путь в жилые помещения. Постепенно накапливаясь в воздухе, они проникают в организм людей, проживающих в доме, утепленном при помощи минеральной ваты. И хотя такого серьезного риска, как в случае со строительными работами, здесь уже нет, тем не менее, вред здоровью все равно может быть нанесен ощутимый. Тем более, что кроме микрочастиц, содержащих тяжелые металлы, из минеральной ваты постепенно выделяются пары фенола и газообразный формальдегид.

Читайте также

Эти вещества используются при производстве минеральной ваты для соединения волокон. Фенол и формальдегид оказывает негативное воздействие на центральную нервную систему, могут стать причиной хронического отравления, вызывать раздражение дыхательных путей. Эти вещества классифицируются как высоко опасные (второй класс опасности). Формальдегид также является аллергеном и канцерогеном. Он включен в список химических канцерогенных факторов санитарно-гигиенического норматива СанПиН 1.2.2353-08 «Канцерогенные факторы и основные требования к профилактике канцерогенной опасности».

Итак, как мы видим, пользы минеральная вата не принесет никому: ни строителю, ни потребителю. При этом, производитель, как правило, не вводит в курс дела потребителя. По вполне понятной причине.Таким образом, к сожалению, многие до сих пор продолжают считать минеральную фату экологичным и безопасным утеплителем.
Поэтому прежде, чем закупаться привычной минватой, подумайте: нужны ли вам эти проблемы? Не лучше ли найти более безопасный вид утеплителя.

Поведение каменной ваты в легких после ингаляции через нос у крыс

Environ Health Prev Med. 2009 июл; 14 (4): 226–234.

и

Юичиро Кудо

Департамент профилактической медицины и общественного здравоохранения, Медицинский факультет Университета Китасато, 1-15-1 Китасато, Сагамихара, Канагава 228-8555 Япония

Йошихару Айзава Департамент профилактики

Медицина и общественное здравоохранение, Медицинский факультет Университета Китасато, 1-15-1 Китасато, Сагамихара, Канагава 228-8555 Япония

Департамент профилактической медицины и общественного здравоохранения, Медицинский факультет Университета Китасато, 1-15-1 Китасато, Сагамихара, Канагава 228-8555 Япония

Автор, ответственный за переписку.

Поступило 13 октября 2008 г .; Принято 16 февраля 2009 г.

Copyright © Японское общество гигиены 2009

Abstract

Для оценки безопасности минеральной ваты (волокон RW) мы исследовали биоперсистентность образца RW в легких крыс на основе изменений волокон количество и размер волокон с точки зрения длины и ширины, согласно исследованию воздействия ингаляции только через нос. Двадцать крыс-самцов Fischer 344 (в возрасте 6–10 недель) подвергались воздействию волокон RW в концентрации 70 (21) волокон / м 3 и 30 (6. 6) мг / м 3 , среднее арифметическое (геометрическое стандартное отклонение), непрерывно в течение 3 часов ежедневно в течение пяти дней подряд. Каждую из пяти крыс умерщвляли вскоре и через 1, 2 и 4 недели после воздействия, и их легкие подвергали озолению низкотемпературным плазмотроном. Затем количество и размеры волокон в озоленных образцах определялись с помощью фазово-контрастного микроскопа и анализатора компьютерных изображений. Количество волокон в легких через 4 недели после воздействия значительно снизилось по сравнению с исходным значением, т.е.е., вскоре после воздействия (P <0,05). Периоды полураспада волокон RW, рассчитанные по однокамерной модели, составили 32 дня для всех волокон и 10 дней для волокон длиннее 20 мкм. Уменьшение количества волокон составило 53,6% через 4 недели после воздействия (исходная группа = 100%). Аналогичным образом, размер волокон значительно уменьшился через 4 недели после воздействия (P <0,05), вероятно, потому, что волокна растворялись в жидкости организма, попадали в организм альвеолярных макрофагов или выводились за пределы тела при мукоцилиарном движении.В будущих исследованиях необходимо изучить долговременное сохранение волокон RW в легких.

Ключевые слова: Минеральная вата, Вдыхание только через нос, Очистка, Биостойкость для синтетической смолы, такой как виниловые полы, доски и шестерни, материал для покрытия распылением для тепло- или звукоизоляции, а также теплоизоляционный материал для труб котлов, печей и т. д.Однако сообщалось, что он вызывает фиброзное заболевание легких, рак легких и злокачественную мезотелиому плевры и брюшины [1–3], и было доказано, что он обладает токсичностью во многих экспериментах in vitro и in vivo. Поэтому использование асбеста запрещено или ограничено во всем мире [4–6]. В Японии Приказ о применении Закона о промышленной безопасности и гигиене труда, Положения о промышленной безопасности и охране здоровья и Постановление о предотвращении опасностей, связанных с определенными химическими веществами, были пересмотрены в 1995 году, чтобы запретить производство, импорт, использование и продажу амозита и крокидолита. , и продукты, содержащие любой из них на уровне более 1%.Кроме того, производство, импорт, использование и продажа хризотила и продуктов, содержащих хризотил в количестве, превышающем 1%, были запрещены с октября 2004 года. В этих обстоятельствах соответствующие отрасли сталкиваются с острой необходимостью разработки более безопасного волокнистого вещества, поскольку заменитель асбеста.

На текущем рынке различные виды искусственных стекловидных волокон (MMVF) используются в качестве заменителей асбеста. Минеральная вата (RW), разновидность MMVF, производится из расплавленного мягкого шлака, такого как железный шлак, медный шлак, никелевый шлак и т. Д., и натуральный камень, такой как андезит, базальт и амфиболит. Поскольку RW отличается теплостойкостью, огнестойкостью и звукопоглощением, он в основном используется в качестве огнестойкого и жаропрочного материала, теплоизоляционного материала и звукопоглощающего материала [7]. В предыдущем исследовании экспериментов in vivo с использованием RW у крыс наблюдался фиброз легких, но не сообщалось о развитии опухолей легких [8], а β-глюкуронидаза и лактатдегидрогеназа (ЛДГ) высвобождались из макрофагов [9] и образовывались гигантские клетки. культивируемых клеток [10], хотя такие эффекты RW были слабее, чем у хризотила.На основании этих исследований Международное агентство по изучению рака (IARC) классифицирует RW как группу 3: ограниченная или незрелая канцерогенность для животных и неклассифицируемая канцерогенность для людей [11].

Для оценки биологических эффектов MMVF, таких как RW, было проведено множество исследований экспериментов in vivo, включая краткосрочное и долгосрочное ингаляционное воздействие, инъекцию MMVF в плевру и брюшину и инъекцию в трахею. В отчетах МАИР [11] доказано, что исследования ингаляционного воздействия являются наиболее подходящим методом для оценки воздействия на здоровье населения.

В настоящем исследовании, чтобы изучить стойкость RW в легких как показатель воздействия RW на дыхательную систему, мы провели исследование краткосрочного ингаляционного воздействия только через нос на крысах.

Материалы и методы

Материалы

В качестве анализируемого материала мы использовали образец RW, произведенный NC Co. Ltd., Япония, предоставленный Ассоциацией каменной ваты, Япония. Флуоресцентная рентгеновская спектроскопия показала, что образец RW химически состоит из 39% SiO 2 , 33% CaO, 14% Al 2 O 3 , 5% MgO, 1.8% Fe 2 O 3 и 0,6% S.

Изначально РАО присутствует в виде комков волокон разного размера (длины и ширины). Как правило, проводятся эксперименты на животных для оценки биологических эффектов MMVF. Поскольку известно, что биологический эффект волокон варьируется в зависимости от размера, размер волокна важен для определения максимального вредного воздействия. Поэтому мы скорректировали размер РАО в соответствии с методикой Кохьямы [12], то есть объемные РАО были залиты в цилиндр (диаметр 6 см, диаметр 28 мкм).3 см 2 ), и давление 160 кг / см 2 (4,5 МПа) применяли дважды, используя ручной пресс для масла (тип BRM 32, Maekawa MFG Co., Ltd., Токио). Необработанные волокна RW были измельчены в более короткие волокна с помощью этого процесса, и измельченные более короткие волокна были использованы для настоящего эксперимента по ингаляции. Размеры измельченных волокон RW, диспергированных в камере экспонирования, измеряли путем отбора проб с использованием метода фильтрации и электронной микроскопии. Их средняя геометрическая длина (геометрическое стандартное отклонение) и средняя геометрическая ширина (геометрическое стандартное отклонение) составляли 15.49 (2,02) мкм и 2,44 (1,59) мкм соответственно (рис.). Затем, чтобы упростить образование RW в системе ингаляционного воздействия только через нос, измельченные волокна RW были смешаны со стеклянными шариками (BZ-02, AS ONE Corp., Осака) в соотношении 1 (RW) к 39 ( стеклянные бусины) на развес.

Электронно-микроскопическое изображение волокна перед генерацией (× 1000)

Система ингаляционного воздействия только через нос

Материалы, приготовленные в соответствии с описанной выше процедурой, обрабатывались следующим образом: воздух подавался от воздушного компрессора к генератору материала, как сообщалось. Кудо и др.[13], со скоростью 30 л / мин, и материалы были помещены в резервуар для хранения материала генератора материалов. Материалы, смешанные со стеклянными шариками, были псевдоожижены воздухом из воздушного компрессора и отделены от стеклянных шариков. В результате материалы были выброшены в воздух. Полученные материалы отправляли в субкамеру, разбавляли фильтрованным воздухом до заданной концентрации и переносили в камеру экспонирования. Скорость вытяжного потока в камере экспонирования была установлена ​​на уровне 40 л / мин.Чтобы поддерживать концентрацию волокон RW (10000 имп / мин) в камере экспонирования, концентрацию контролировали с помощью цифрового измерителя пыли, а количество материалов, которые должны были образоваться, регулировали путем подачи обратной связи на питатель. Держатели для крыс помещали в камеру экспонирования.

Исследование воздействия

Десять крыс-самцов Fischer 344 (в возрасте 6–10 недель) использовались для каждого эксперимента, и каждый эксперимент проводился дважды (всего 20 крыс). Чтобы акклиматизировать крыс к окружающей среде лаборатории, их сначала помещали в клетки на 1 неделю со свободным доступом к воде, пище и свежему фильтрованному воздуху.В камере поддерживалась температура 22 ° C и влажность 40%.

Эксперимент проводился путем непрерывного воздействия на крыс волокон RW в течение 3 часов в день в течение пяти дней подряд. Целевая концентрация волокон в воздухе была установлена ​​равной 30 мг / м 3 по массовой концентрации и 50 ± 10 волокон / см 3 по концентрации волокон. Каждый день в течение экспериментального периода крыс, закрепленных в верхних держателях для крыс в основной камере, заменяли крысами в нижних держателях для крыс, меняя положения между верхними и нижними держателями для крыс.В течение периода экспонирования концентрацию волокна в камере контролировали пять раз в день (30, 60, 90, 120 и 150 мин после начала эксперимента по экспонированию) с помощью следующих методов мониторинга волокон в воздухе в дополнение к постоянному мониторингу с помощью цифровой измеритель пыли (Shibata Corp. , Токио). Для контроля концентрации волокон в воздухе в камере экспонирования только для носа отбирали пробы воздуха с использованием мембранных фильтров (Nihon Millipore KK, Токио, диаметр пор 0,8 мкм и диаметр 25 мм; именуемые «MF»), фильтры T60A20 (Tokyo Dylec Corp., Токио, диаметр 25 мм; называемые «T60A20»), и фильтры Nuclepore (Nomura Micro Science Co., Ltd., Kanagawa, диаметр пор 0,2 мкм, диаметр 25 мм; именуемые «NF»), установленные в пластиковом держателе. В течение заданного периода времени образцы волокон собирали на MF в течение 1 мин, T60A20 в течение 10 минут и NF в течение 5 минут с помощью электрического всасывающего насоса (GilAir-5: Gilian, США), и концентрацию волокна подтверждали измерением количество волокон (волокно / см 3 ) и массовая концентрация (мг / м 3 ) с использованием соответствующих фильтров.Волокна, собранные на MF с соотношением сторон (отношение длины к ширине) 3 или выше, были измерены с помощью фазово-контрастной микроскопии в соответствии с критериями измерения волокон [14]. Для измерения массовой концентрации (мг / м 3 ) вес собранных по воздуху волокон T60A20 измеряли с помощью электронных весов, сравнивая с весом до отбора пробы.

Вскоре после пятого дня воздействия пять крыс (средний вес 180 г) были умерщвлены (группа вскоре после заражения). По пять крыс также умерщвляли через 1 неделю (группа через 1 неделю), через 2 недели (группа через 2 недели) и через 4 недели (группа через 4 недели) после окончания периода воздействия.Вес тела крыс измеряли один раз в неделю, а их внешний вид и состояние периодически контролировали на предмет любых изменений во время и после периода воздействия.

Измерение волокон в легких крыс

Под анестезией пентобарбиталом (0,15 мг / кг массы тела) крыс умерщвляли кровотечением из брюшной аорты и резецировали их легкие. Резецированные легкие хранили при низкой температуре (-20 ° C). Затем ткани легких размораживали при комнатной температуре, измельчали ​​и лиофилизировали, чтобы снизить их вес до заданного уровня. Вес после лиофилизации рассматривался как вес высушенных легких. Лиофилизированные легкие около 17 мг сжигали в низкотемпературной печи (Plasma Asher LTA-102, Yanaco Corp., Киото) в течение 24 часов.

После сжигания дистиллированная вода, которая была профильтрована с помощью Minisart (Sartorius KK, Tokyo), была добавлена ​​в бутыль для взвешивания, чтобы суспендировать волокна, и волокна были собраны на MF (диаметр пор 0,22 мкм) с использованием всасывающего фильтра и оставлены для хранения. сухой. Высушенный фильтр помещали на предметное стекло и обрабатывали парами ацетона с помощью Quick Fix, делая его прозрачным.На каждом образце фильтра подсчитывали не менее 200 волокон RW с помощью фазово-контрастного микроскопа (BX41, Olympus Corp., Токио). Подсчитывались волокна с соотношением сторон 3 или выше. Win Roof (программное обеспечение для анализа изображений, Mitani Corp., Токио) использовали для получения количества волокон, различая длину (L) как L ≤ 5 мкм, 5 мкм 20 мкм. Среди подсчитанных волокон также была измерена концентрация волокон (L> 5 мкм и ширина <3 мкм) в соответствии с методом Всемирной организации здравоохранения (ВОЗ) (называемым «волокна ВОЗ») [11].Затем количество волокон переводили в количество волокон на вес высушенной легочной ткани. Период полураспада волокон в легких крысы был рассчитан исходя из предположения, что среднее геометрическое значение общего количества волокон, деленное на общий вес легких (волокна / мг) в легких в группе, получавшей вскоре после этого, было 100% [15].

Измерение размеров волокон

Для измерения размеров волокон (длины и ширины) в воздухе и в легких волокна в пределах измеряемого визуального диапазона и с соотношением сторон 3 или выше были измерены с помощью фазово-контрастного микроскопа. при увеличении 400 ×.На каждую крысу подсчитывали не менее 200 волокон 0,36 мкм или более.

Статистический анализ

Были рассчитаны среднее геометрическое и геометрическое стандартное отклонение общего количества волокон по длине и ширине. Кроме того, для измерения длины и ширины для каждой крысы использовали минимум 200 волокон, полученных в двух экспериментах, которые попали в легкие крыс. Затем рассчитывали среднее геометрическое для группы из пяти крыс. Был проведен односторонний дисперсионный анализ и множественные сравнения с помощью теста Шеффе.

Результаты

Мониторинг концентрации волокна в камере экспонирования

В таблице показана концентрация волокна в камере экспонирования в каждом эксперименте. Средние (SD) значения подсчета, полученные цифровым измерителем пыли для первого и второго экспериментов (5 дней каждый), составили 9 257 (182,4) и 10 042 (966) отсчетов / мин. Средние концентрации волокон (SD) в камере экспонирования составляли 75,1 (18,0) и 63,7 (23,3) волокон / см 3 , и аналогично средние массовые концентрации (SD) составляли 30.0 (5,7) мг / м 3 и 30,5 (7,4) мг / м 3 соответственно. На рис. 2 показано частотное распределение (гистограмма) длины и ширины волокон внутри камеры экспонирования, в котором среднее геометрическое (GSD) длины составляло 15,49 (2,02) мкм, а ширина — 2,44 (1,59) мкм.

Таблица 1

Концентрация волокна в камере экспонирования

Первый эксперимент Второй эксперимент
Цифровой измеритель пыли (отсчет / мин) Концентрация волокна (ф / см 3 ) Весовая концентрация (мг / м 3 ) Цифровой измеритель пыли (количество / мин) Концентрация волокна (ф / см 3 ) Весовая концентрация (мг / м 3 )
День 1 (n = 5) 9861 (274) 81. 0 (19,5) 30,0 (6,2) 9550 (134) 39,8 (14,3) 24,4 (3,6)
День 2 (n = 5) 9237 (197) 72,8 (5,0) ) 27,0 (7,1) 9824 (585) 77,4 (27,4) 30,8 (4,6)
День 3 (n = 5) 9247 (97) 81,3 (14,9) 33,2 (7,8) 10419 (215) 69,9 (20,1) 37,2 (5,4)
День 4 (n = 5) 9313 (154) 65.0 (26,2) 29,2 (2,3) 9636 (1697) 63,1 (21,6) 24,4 (6,2)
День 5 (n = 5) 9137 (81) 86,8 (12,0) ) 30,4 (4,3) 10851 (458) 68,5 (20,1) 37,2 (5,0)
Среднее (n = 25) 9257 (182,4) 75,1 (18,0) 30,0 (5,7) 10042 (966) 63,7 (23,3) 30,5 (7,4)

a Распределение длины образовавшихся волокон (внутри камеры). b Распределение ширины образовавшихся волокон (внутри камеры)

Скорость отложения внутрилегочных волокон

Общее количество волокон RW, вдыхаемых крысами в течение экспериментального периода, рассчитывали по следующему уравнению:

Рассчитывали объем дыхания у крыс. по следующему уравнению [16]:

Так как средняя масса тела крыс составляла 131 г, дыхательный объем был рассчитан следующим образом:

Концентрация волокон RW в камере экспонирования, рассчитанная в соответствии с правилами Руководства для Измерение рабочей среды [14] было 70.6 волокон / см 3 . Поскольку крысы подвергались воздействию в течение 3 часов ежедневно в течение пяти дней подряд, общее количество вдыхаемых волокон RW было рассчитано следующим образом:

Поскольку общее количество волокон в легких, соответствующее этому количеству, оказалось равным 7,09 × 10 5 Вскоре после воздействия волокна скорость отложения внутрилегочного волокна была рассчитана следующим образом:

Таким образом, скорость отложения внутрилегочного волокна составила 13,7%.

Изменения количества волокон в обоих легких

Таблица и рис.показывают количество волокон RW, накопленных в легких, и их пропорции, исходя из предположения, что значение вскоре после воздействия составляло 100%.

Таблица 2

Число волокон в легких и их пропорции

90. 43 (1,13)

Неделя -после группы

-после группы

Группа умерщвленных крыс Всего волокон Волокна короче или равны 5 мкм (L ≤ 5 мкм) Волокна длиннее 5 мкм и короче не менее 20 мкм (5 мкм Волокна длиннее 20 мкм (L> 20 мкм) Волокна ВОЗ
Среднее геометрическое (GSD)% Среднее геометрическое (GSD )% Среднее геометрическое (GSD)% Среднее геометрическое (GSD)% Среднее геометрическое (GSD)%
Вскоре 157 группа 9 100,0 2,12 (1,24) 100,0 6,08 (1,13) 100,0 1,21 (1,14) 100,0 7,09 (1,12) 100,0 100,0 7,42 (1,35) 78,7 2,04 (1,50) 96,3 4,75 (1,34) 78,2 0,54 (1,83) 73,9 5,206

5,206 (1,36)

Группа через 2 недели после 7.68 (1,17) 81,5 2,12 (1,16) 100,3 5,07 (1,21) 83,4 0,42 (1,73) 34,7 5,45 (1,20) 76,9 76,9 5,05 (1,23) a, c 53,6 1,59 (1,48) 74,9 3,13 (1,24) a, c 51,5 0,22 (2,27)

0,22 (2,27)

17,9 3,38 (1,25) а, б, в 47. 7

Процент волокон в легких: закрашенный квадрат сразу после группы, полосатый столбик через 1 неделю после группы, пунктирный квадрат через 2 недели после группы, открытый квадрат через 4 недели после группы. Процент, при условии, что значение группы «вскоре после» равно 100%. n = 5, L Длина волокна (мкм)

Среднее значение общего количества волокон в обоих высушенных легких имело тенденцию к снижению в течение периода от вскоре после воздействия до 4 недель после воздействия. Хотя скорость уменьшения количества волокон длиной 5 мкм или меньше (L ≤ 5 мкм), тех, которые длиннее 5 мкм, но короче или равны 20 мкм (5 мкм 5 мкм и W <3 мкм) были низкими в определенный момент, количество волокон в группе через 4 недели было меньше, чем в группе вскоре после (100%).В то же время волокна длиной более 20 мкм (L> 20) имели тенденцию к относительно быстрому уменьшению в течение периода от вскоре после воздействия до 4 недель после воздействия. Множественное сравнение с помощью теста Шеффе показало, что количество общих волокон, с 5 мкм 20 мкм, и волокон ВОЗ в группе через 4 недели после операции значительно уменьшилось по сравнению с группой, получавшей вскоре после операции. (P <0,05).

Период полураспада волокон

Данные, полученные путем построения графика зависимости количества волокон в легких крысы от времени измерения в логарифмической шкале, показывают линейность (т.е.е., экспоненциально) убывает. Таким образом, период полураспада был рассчитан по однокамерной модели, как показано на рис. Периоды полураспада на основе этого расчета составили 32 дня для общего количества волокон, 86 дней для L ≤ 5 мкм, 31 день для 5 мкм 20 мкм и 27 дней для волокон ВОЗ. . Период полураспада более длинных волокон (L> 20 мкм), как правило, короче, чем у более коротких волокон (L ≤ 20 мкм).

Клиренс RW волокон из легких крысы (%), рассчитанный исходя из предположения, что значение группы, полученной вскоре после операции, составляет 100%

Распределение и изменения размера волокон

В таблице показаны изменения длины и ширины внутрилегочных волокон в группах вскоре после и через 1, 2 и 4 недели после, выраженное средним геометрическим, с геометрическим стандартным отклонением в скобках.

Таблица 3

Изменения длины и ширины волокон в легких

Группа вскоре после

2-92

группа недель после
Группа умерщвленных крыс Среднее геометрическое (GSD)
Длина (мкм) Ширина (мкм)

8,58 (1,94) 1,26 (1,43)
Группа через 1 неделю 7,53 (1,87) a 1,18 (1,39) a
7.35 (1,80) a 1,17 (1,37) a
Группа через 4 недели после 6,87 (1,75) a, b 1,14 (1,32) a

29

Средняя длина составила 8,58 мкм в группе, получавшей вскоре после этого, и значительно уменьшилась в трех других группах, составляя 6,87 мкм в группе, получавшей 4 недели после (P <0,05). По сравнению с группой, получавшей через 1 неделю, он значительно снизился в группе через 4 недели (P <0,05).

Средняя ширина составила 1,26 мкм в группе, получавшей вскоре после этого, и значительно уменьшилась в трех других группах, составляя 1,14 мкм в группе через 4 недели (P <0,05).

Обсуждение

Во многих предыдущих эпидемиологических, физико-химических исследованиях и исследованиях на животных было показано, что размер волокна и биоперсистентность асбеста или MMVF являются важными факторами с точки зрения их неблагоприятного воздействия на здоровье, особенно канцерогенности. Что касается вдыхаемых волокон, эти предыдущие исследования показали, что чем тоньше и длиннее волокна, тем канцерогенными они становятся.Кроме того, что касается биоперсистенции, волокна, которые остаются в тканях легких в течение длительного периода времени без разрушения или передачи, считаются более канцерогенными [15]. Говорят, что волокна длиной 20 мкм и более с длительным периодом полураспада имеют тенденцию вызывать фиброз или рак из-за их низкой деградации в живом организме [11, 15]. Биоперсистенция связана с количеством волокон, которые остаются в легких (количество удерживаемых внутрилегочных волокон). Количество удерживаемых внутрилегочных волокон — это количество волокон, которые вошли в легкие и остались, за вычетом объема, выведенного за счет самоочищающего действия легких.Он показывает количество, которое присутствует в легких в результате воздействия. Количество удерживаемой внутрилегочной клетчатки основано на балансе удержания-экскреции: если внутрилегочный удерживаемый объем слишком велик для того, чтобы экскреция могла наверстать упущенное, или если экскреция не работает должным образом, это количество увеличивается, вызывая повреждение легких [11].

Система ингаляционной экспозиции только через нос, используемая в этом эксперименте, является улучшенной версией традиционного типа, в которой субкамера была установлена ​​непосредственно перед камерой экспонирования.У этого подхода есть два преимущества. Во-первых, субкамера может контролировать концентрацию образующихся волокон RW, позволяя подавать заданную концентрацию в камеру экспонирования. Во-вторых, субкамера может отбирать волокна одинакового размера и подавать их в основную камеру экспонирования. Поскольку длинные и толстые волокна, которые крысы не могут вдохнуть, осаждаются в субкамере, в камеру экспонирования можно подавать только вдыхаемые волокна. Этот метод также позволял постоянно генерировать волокна RW с относительно высокой концентрацией в течение определенного периода времени. Следовательно, волокна RW генерировались почти с одинаковой концентрацией, потому что они генерировались почти при целевых концентрациях волокна и изначально предполагаемых массовых концентрациях, хотя были некоторые ежедневные колебания.

Hammad et al. [17] сообщили, что скорость отложения волокон была почти в диапазоне 1-7% у крыс, вскрытых на 5-й день после воздействия волокон в течение 6 часов ежедневно в течение пяти дней подряд, в то время как скорость отложения волокон в нашем исследовании вскоре после конец воздействия после воздействия в течение 3 часов ежедневно в течение пяти дней подряд составил 13.7%, хотя невозможно провести прямое сравнение между двумя исследованиями. В будущих исследованиях мы планируем измерить скорость осаждения при тех же условиях, что и в предыдущем исследовании [17], чтобы результаты можно было сравнить.

Общее количество волокон и количество волокон, подсчитываемое по длине, имеет тенденцию к уменьшению со временем от вскоре после воздействия до конца четвертой недели. В предыдущих исследованиях искусственные волокна стекловидного тела всех размеров уменьшались на 30–50% в течение 30 дней после воздействия [18, 19].Волокна, которые вдыхаются и осаждаются в легких, демонстрируют различные механизмы очистки в зависимости от места выпадения осадка. Волокна, отложенные в бронхиолах, переносятся мукоцилиарными движениями в глотку и выводятся из организма [11, 14]. Предполагается, что волокна, откладывающиеся в альвеолах, выводятся либо (а) путем растворения жидкостью организма или фагоцитоза и переваривания альвеолярными макрофагами (химическая экскреция), либо (б) переносятся в дыхательные пути или лимфатическую ткань альвеолярными макрофагами и разряжаются. из организма (физическое выделение).Фагоцитируется волокно или нет, зависит от его длины. Волокна длиной 20 мкм или короче, по-видимому, фагоцитируются и перевариваются альвеолярными макрофагами [11, 15], тогда как волокна длиной более 20 мкм не могут быть полностью фагоцитированы альвеолярными макрофагами. Предполагается, что эти волокна либо (а) растворяются жидкостью организма, либо (б) складываются в поперечном направлении и измельчаются для сокращения длины, а затем фагоцитируются и перевариваются альвеолярными макрофагами, либо попадают в легочные эпителиальные клетки и переносятся в лимфатическую ткань, таким образом, выделяется из организма [11, 15].Считается, что эти механизмы уменьшают количество волокон. Более того, скорость уменьшения количества волокон с длиной короче 20 мкм замедлилась в группах через 1 и 2 недели. Возможная причина этого явления заключается в том, что волокна длиной более 20 мкм растворялись внеклеточной жидкостью и складывались в поперечном направлении с измельчаемыми волокнами, таким образом увеличивая количество более коротких волокон (короче 20 мкм) и, как следствие, увеличивая скорость образования накопление по ряду показателей, в том числе по общему количеству волокон [11].

Период полураспада был особенно коротким (10 дней) для длинных волокон длиной 20 мкм и более. В предыдущем исследовании сообщалось, что период полураспада составлял 111 дней для волокон ВОЗ из RW (L> 5 мкм и W <3 мкм) и 53 дня для волокон длиной 20 мкм или более [18]. Период полураспада волокон длиннее 20 мкм был короче, чем у волокон других размеров в этом исследовании. Причина, по-видимому, в следующем: количество волокон длиной более 20 мкм быстро уменьшалось, что приводило к короткому периоду полураспада, поскольку они складывались в поперечном направлении и становились короче.Напротив, количество волокон размером 20 мкм или короче не уменьшалось быстро, и, таким образом, период полураспада был больше, потому что более длинные волокна складывались и становились короче, что приводило к увеличению количества волокон на 20 мкм или меньше, даже если количество из более коротких волокон был уменьшен фагоцитозом макрофагами.

Распределение волокон по размерам (длине и ширине) образовавшихся волокон значительно отличалось от распределения волокон в легких. Сообщалось, что волокна, вдыхаемые через нос крысы, обычно имеют длину менее 80 мкм и менее 1.Шириной 5 мкм [20]. Следовательно, разница, наблюдаемая в этом исследовании, может указывать на разделение по размеру из-за вдыхания крысами. После вдыхания волокон в легкие размеры волокон (как по длине, так и по ширине) имеют тенденцию уменьшаться со временем по сравнению с размерами вскоре после воздействия. В предыдущем исследовании RW, проведенном в Дании, средняя длина уменьшилась с примерно 9 мкм вскоре после воздействия до примерно 8 мкм на четвертой неделе [21]. Средняя ширина также уменьшилась с примерно 0,7 мкм вскоре после экспонирования до примерно 0.6 мкм на четвертой неделе [21]. В другом исследовании RW, проведенном в Дании, средняя длина уменьшилась с примерно 11 мкм вскоре после воздействия до примерно 10 мкм на четвертой неделе, а средняя ширина уменьшилась с примерно 0,8 мкм вскоре после воздействия до примерно 0,6 мкм на четвертой неделе [ 18]. Причина уменьшения средней длины и ширины, по-видимому, заключается в следующем: волокна длиной 20 мкм или короче были фагоцитированы альвеолярными макрофагами, как указывалось ранее, в то время как волокна длиной более 20 мкм были либо (а) захвачены в трахее и выведены из нее. тело путем мукоцилиарного движения или (б) растворяется жидкостью тела или складывается, укорачивается и фагоцитируется макрофагами [15].Длина, по-видимому, уменьшилась благодаря тому же механизму уменьшения количества волокон, который описан ранее. Между тем считается, что ширина уменьшилась в результате растворения жидкостью организма.

В другом отчете говорилось, что уменьшение размера клетчатки жидкостью организма было вызвано изменением химического состава [21]. В этом исследовании изменения химического состава MMVF наблюдались в течение года, и предполагалось, что размеры волокон равномерно уменьшаются [21]. При исследовании стекловаты было показано, что оксиды щелочных и щелочноземельных металлов уменьшаются, а химические составляющие волокон растворяются неравномерно.После этого волокна складывались в поперечном направлении и фагоцитировались альвеолярными макрофагами, уменьшая длину и ширину [21].

В этом исследовании мы изучили поведение RW в легких, чтобы оценить его стойкость в легких, с помощью краткосрочного ингаляционного воздействия только через нос на крысах. Строго говоря, невозможно провести прямое сравнение результатов длительного и краткосрочного наблюдения, как это было в настоящем исследовании. Основываясь на признании этого ограничения, настоящее исследование, по-видимому, предполагает безопасность волокон RW.В настоящее время мы проводим эксперимент по долговременному ингаляционному воздействию через нос, чтобы изучить патологические эффекты RW, такие как длительное сохранение RW в легких, канцерогенность и легочный фиброз, и планируем дополнительно оценить безопасность RW, принимая во внимание также результаты настоящего исследования.

Выражение признательности

Мы хотели бы выразить нашу глубочайшую благодарность доктору Хидеки Эндзэ, Департамент профилактической медицины и общественного здравоохранения, Медицинский факультет Университета Китасато, за поддержку, руководство и корректуру рукописи.Мы также хотели бы поблагодарить г-жу Юмико Сугиура, г-жу Ёко Иноуэ, г-жу Юми Комацу, г-жу Мичио Кояма и г-жу Аску Ямамото, факультет профилактической медицины и общественного здравоохранения, Медицинский факультет Университета Китасато, и г-на Сичиро. Миядзаве и г-же Норико Немото, Центр электронной микроскопии, за их дотошные советы и поддержку.

Список литературы

1. Долл Р. Смертность от рака легких у рабочих, работающих с асбестом. Br J Ind Med. 1993; 50: 485–90. [Бесплатная статья PMC] [PubMed]

2. Отдел планирования, Бюро качества воздуха, Министерство окружающей среды ред.Все об асбесте и цеолите. Кавасаки: Японский центр экологической санитарии, 1987: 1–476.

3. Моринага К., Кохьяма Н. Здравоохранение рабочих, работающих с асбестом. Токио: Фонд содействия гигиене труда; 1993. стр. 141–66.

4. Берри Г. Смертность рабочих, аттестованных по медиальным панелям пневмокониоза, как больных асбестозом. Br J Ind Med. 1981; 38: 130–7. [Бесплатная статья PMC] [PubMed] 5. Гормли И.П., Болтон Р.Э., Браун Г.М. и др. Некоторые наблюдения по цитотоксичности in vitro хризотила, полученного методом влажного диспергирования.Перспектива здоровья окружающей среды. 1983; 51: 35–9. [Бесплатная статья PMC] [PubMed]

6. Коши К., Сакабе Х. Влияние асбестовой пыли на культивируемые макрофаги. Ind Health. 1972; 10: 16–23.

7. Отдел планирования Бюро качества воздуха Министерства окружающей среды изд. Все о заменителях асбеста. Кавасаки: Японский центр санитарии окружающей среды 1989: 106–9.

8. МакКоннелл Е.Е., Экстен С., Хестерберг Т.В. и др. Исследования ингаляционной токсикологии двух стекловолоконных материалов и амозитного асбеста на сирийском золотом хомяке.Часть II. Результаты хронического воздействия. Вдыхать токсикол. 1999; 11: 785–835. [PubMed] 9. Дэвис Р. Влияние минеральных волокон на макрофаги. IARC Sci Publ. 1980; 30: 419–25. [PubMed] 10. Браун Р.К., Чемберлен М., Скидмор Дж. В.. Эффекты искусственных минеральных волокон in vitro. Ann Occup Hyg. 1979; 22: 175–9. [PubMed] 11. Искусственные жилые волокна. Монографии МАИР по оценке канцерогенных рисков для человека, вып. 81. Лион: МАИР; 2002. [Бесплатная статья PMC] [PubMed] 12. Кохьяма Н., Танака И., Томита М. и др. Подготовка и характеристика стандартных образцов волокнистых минералов для биологических экспериментов.Ind Health. 1997; 35: 415–32. [PubMed] 13. Кудо Ю., Шибата К., Мики Т. и др. Поведение нового типа минеральной ваты (HT-ваты) в легких после воздействия через нос у крыс. Environ Health Prev Med. 2005; 10: 239–48. [Бесплатная статья PMC] [PubMed]

14. Управление по улучшению окружающей среды, Департамент промышленной безопасности и здоровья, Министерство труда, ред. Минеральная пыль. Руководство по измерению рабочей среды I, Токио: Японская ассоциация по измерению рабочей среды, 2000: 167–80.

15.Хестерберг Т.В., Харт Г.А. Синтетические стекловидные волокна: обзор токсикологических исследований и их влияние на классификацию опасности. Crit Rev Toxicol. 2001; 31: 1–53. [PubMed]

16. Танака И. Отложение и удаление частиц в органах дыхания у мелких животных. J Aerosol Res. 1988. 3: 16–23. (на японском).

17. Хаммад Ю., Дием Дж., Крейгхед Дж. И др. Отложение вдыхаемых искусственных минеральных волокон в легких крыс. Ann Occup Hyg. 1982; 26: 179–87. [PubMed] 18. Хестерберг Т.В., Чейз Дж., Экстен С. и др.Биоперсистенция синтетических волокон стекловидного тела и амозитного асбеста в легких крыс после вдыхания. Toxicol Appl Pharmacol. 1998. 151: 262–75. [PubMed] 19. Массельман Р.П., Мюллер В.С., Истес В. и др. Биоперсистенция искусственных стекловидных волокон и волокон крокидолита в легких крыс после кратковременного воздействия. Перспектива здоровья окружающей среды. 1994; 102 (добавление 5): 139–43. [Бесплатная статья PMC] [PubMed]

20. МакКоннелл Е.Е., Камструп О., Массельман Р.П. и др. Хроническое ингаляционное исследование разделенных по размеру изоляционных волокон из каменной и шлаковой ваты на крысах Fischer 344 / N.Вдыхать токсикол. 1994; 6: 571–614.

21. Хестерберг Т.В., Мюллер В.С., Массельман Р.П. и др. Биоперсистенция искусственных стекловидных волокон и крокидолитового асбеста в легких крыс после вдыхания. Fundam Appl Toxicol. 1996; 29: 267–79. [PubMed]

Поведение каменной ваты в легких после воздействия через нос у крыс

Environ Health Prev Med. 2009 июл; 14 (4): 226–234.

и

Юичиро Кудо

Департамент профилактической медицины и общественного здравоохранения, Медицинский факультет Университета Китасато, 1-15-1 Китасато, Сагамихара, Канагава 228-8555 Япония

Йошихару Айзава Департамент профилактики

Медицина и общественное здравоохранение, Медицинский факультет Университета Китасато, 1-15-1 Китасато, Сагамихара, Канагава 228-8555 Япония

Департамент профилактической медицины и общественного здравоохранения, Медицинский факультет Университета Китасато, 1-15-1 Китасато, Сагамихара, Канагава 228-8555 Япония

Автор, ответственный за переписку.

Поступило 13 октября 2008 г .; Принято 16 февраля 2009 г.

Copyright © Японское общество гигиены 2009

Abstract

Для оценки безопасности минеральной ваты (волокон RW) мы исследовали биоперсистентность образца RW в легких крыс на основе изменений волокон количество и размер волокон с точки зрения длины и ширины, согласно исследованию воздействия ингаляции только через нос. Двадцать крыс-самцов Fischer 344 (в возрасте 6–10 недель) подвергались воздействию волокон RW в концентрации 70 (21) волокон / м 3 и 30 (6.6) мг / м 3 , среднее арифметическое (геометрическое стандартное отклонение), непрерывно в течение 3 часов ежедневно в течение пяти дней подряд. Каждую из пяти крыс умерщвляли вскоре и через 1, 2 и 4 недели после воздействия, и их легкие подвергали озолению низкотемпературным плазмотроном. Затем количество и размеры волокон в озоленных образцах определялись с помощью фазово-контрастного микроскопа и анализатора компьютерных изображений. Количество волокон в легких через 4 недели после воздействия значительно снизилось по сравнению с исходным значением, т.е.е., вскоре после воздействия (P <0,05). Периоды полураспада волокон RW, рассчитанные по однокамерной модели, составили 32 дня для всех волокон и 10 дней для волокон длиннее 20 мкм. Уменьшение количества волокон составило 53,6% через 4 недели после воздействия (исходная группа = 100%). Аналогичным образом, размер волокон значительно уменьшился через 4 недели после воздействия (P <0,05), вероятно, потому, что волокна растворялись в жидкости организма, попадали в организм альвеолярных макрофагов или выводились за пределы тела при мукоцилиарном движении.В будущих исследованиях необходимо изучить долговременное сохранение волокон RW в легких.

Ключевые слова: Минеральная вата, Вдыхание только через нос, Очистка, Биостойкость для синтетической смолы, такой как виниловые полы, доски и шестерни, материал для покрытия распылением для тепло- или звукоизоляции, а также теплоизоляционный материал для труб котлов, печей и т. д.Однако сообщалось, что он вызывает фиброзное заболевание легких, рак легких и злокачественную мезотелиому плевры и брюшины [1–3], и было доказано, что он обладает токсичностью во многих экспериментах in vitro и in vivo. Поэтому использование асбеста запрещено или ограничено во всем мире [4–6]. В Японии Приказ о применении Закона о промышленной безопасности и гигиене труда, Положения о промышленной безопасности и охране здоровья и Постановление о предотвращении опасностей, связанных с определенными химическими веществами, были пересмотрены в 1995 году, чтобы запретить производство, импорт, использование и продажу амозита и крокидолита. , и продукты, содержащие любой из них на уровне более 1%.Кроме того, производство, импорт, использование и продажа хризотила и продуктов, содержащих хризотил в количестве, превышающем 1%, были запрещены с октября 2004 года. В этих обстоятельствах соответствующие отрасли сталкиваются с острой необходимостью разработки более безопасного волокнистого вещества, поскольку заменитель асбеста.

На текущем рынке различные виды искусственных стекловидных волокон (MMVF) используются в качестве заменителей асбеста. Минеральная вата (RW), разновидность MMVF, производится из расплавленного мягкого шлака, такого как железный шлак, медный шлак, никелевый шлак и т. Д., и натуральный камень, такой как андезит, базальт и амфиболит. Поскольку RW отличается теплостойкостью, огнестойкостью и звукопоглощением, он в основном используется в качестве огнестойкого и жаропрочного материала, теплоизоляционного материала и звукопоглощающего материала [7]. В предыдущем исследовании экспериментов in vivo с использованием RW у крыс наблюдался фиброз легких, но не сообщалось о развитии опухолей легких [8], а β-глюкуронидаза и лактатдегидрогеназа (ЛДГ) высвобождались из макрофагов [9] и образовывались гигантские клетки. культивируемых клеток [10], хотя такие эффекты RW были слабее, чем у хризотила.На основании этих исследований Международное агентство по изучению рака (IARC) классифицирует RW как группу 3: ограниченная или незрелая канцерогенность для животных и неклассифицируемая канцерогенность для людей [11].

Для оценки биологических эффектов MMVF, таких как RW, было проведено множество исследований экспериментов in vivo, включая краткосрочное и долгосрочное ингаляционное воздействие, инъекцию MMVF в плевру и брюшину и инъекцию в трахею. В отчетах МАИР [11] доказано, что исследования ингаляционного воздействия являются наиболее подходящим методом для оценки воздействия на здоровье населения.

В настоящем исследовании, чтобы изучить стойкость RW в легких как показатель воздействия RW на дыхательную систему, мы провели исследование краткосрочного ингаляционного воздействия только через нос на крысах.

Материалы и методы

Материалы

В качестве анализируемого материала мы использовали образец RW, произведенный NC Co. Ltd., Япония, предоставленный Ассоциацией каменной ваты, Япония. Флуоресцентная рентгеновская спектроскопия показала, что образец RW химически состоит из 39% SiO 2 , 33% CaO, 14% Al 2 O 3 , 5% MgO, 1.8% Fe 2 O 3 и 0,6% S.

Изначально РАО присутствует в виде комков волокон разного размера (длины и ширины). Как правило, проводятся эксперименты на животных для оценки биологических эффектов MMVF. Поскольку известно, что биологический эффект волокон варьируется в зависимости от размера, размер волокна важен для определения максимального вредного воздействия. Поэтому мы скорректировали размер РАО в соответствии с методикой Кохьямы [12], то есть объемные РАО были залиты в цилиндр (диаметр 6 см, диаметр 28 мкм).3 см 2 ), и давление 160 кг / см 2 (4,5 МПа) применяли дважды, используя ручной пресс для масла (тип BRM 32, Maekawa MFG Co., Ltd., Токио). Необработанные волокна RW были измельчены в более короткие волокна с помощью этого процесса, и измельченные более короткие волокна были использованы для настоящего эксперимента по ингаляции. Размеры измельченных волокон RW, диспергированных в камере экспонирования, измеряли путем отбора проб с использованием метода фильтрации и электронной микроскопии. Их средняя геометрическая длина (геометрическое стандартное отклонение) и средняя геометрическая ширина (геометрическое стандартное отклонение) составляли 15.49 (2,02) мкм и 2,44 (1,59) мкм соответственно (рис.). Затем, чтобы упростить образование RW в системе ингаляционного воздействия только через нос, измельченные волокна RW были смешаны со стеклянными шариками (BZ-02, AS ONE Corp., Осака) в соотношении 1 (RW) к 39 ( стеклянные бусины) на развес.

Электронно-микроскопическое изображение волокна перед генерацией (× 1000)

Система ингаляционного воздействия только через нос

Материалы, приготовленные в соответствии с описанной выше процедурой, обрабатывались следующим образом: воздух подавался от воздушного компрессора к генератору материала, как сообщалось. Кудо и др.[13], со скоростью 30 л / мин, и материалы были помещены в резервуар для хранения материала генератора материалов. Материалы, смешанные со стеклянными шариками, были псевдоожижены воздухом из воздушного компрессора и отделены от стеклянных шариков. В результате материалы были выброшены в воздух. Полученные материалы отправляли в субкамеру, разбавляли фильтрованным воздухом до заданной концентрации и переносили в камеру экспонирования. Скорость вытяжного потока в камере экспонирования была установлена ​​на уровне 40 л / мин.Чтобы поддерживать концентрацию волокон RW (10000 имп / мин) в камере экспонирования, концентрацию контролировали с помощью цифрового измерителя пыли, а количество материалов, которые должны были образоваться, регулировали путем подачи обратной связи на питатель. Держатели для крыс помещали в камеру экспонирования.

Исследование воздействия

Десять крыс-самцов Fischer 344 (в возрасте 6–10 недель) использовались для каждого эксперимента, и каждый эксперимент проводился дважды (всего 20 крыс). Чтобы акклиматизировать крыс к окружающей среде лаборатории, их сначала помещали в клетки на 1 неделю со свободным доступом к воде, пище и свежему фильтрованному воздуху.В камере поддерживалась температура 22 ° C и влажность 40%.

Эксперимент проводился путем непрерывного воздействия на крыс волокон RW в течение 3 часов в день в течение пяти дней подряд. Целевая концентрация волокон в воздухе была установлена ​​равной 30 мг / м 3 по массовой концентрации и 50 ± 10 волокон / см 3 по концентрации волокон. Каждый день в течение экспериментального периода крыс, закрепленных в верхних держателях для крыс в основной камере, заменяли крысами в нижних держателях для крыс, меняя положения между верхними и нижними держателями для крыс.В течение периода экспонирования концентрацию волокна в камере контролировали пять раз в день (30, 60, 90, 120 и 150 мин после начала эксперимента по экспонированию) с помощью следующих методов мониторинга волокон в воздухе в дополнение к постоянному мониторингу с помощью цифровой измеритель пыли (Shibata Corp., Токио). Для контроля концентрации волокон в воздухе в камере экспонирования только для носа отбирали пробы воздуха с использованием мембранных фильтров (Nihon Millipore KK, Токио, диаметр пор 0,8 мкм и диаметр 25 мм; именуемые «MF»), фильтры T60A20 (Tokyo Dylec Corp., Токио, диаметр 25 мм; называемые «T60A20»), и фильтры Nuclepore (Nomura Micro Science Co., Ltd., Kanagawa, диаметр пор 0,2 мкм, диаметр 25 мм; именуемые «NF»), установленные в пластиковом держателе. В течение заданного периода времени образцы волокон собирали на MF в течение 1 мин, T60A20 в течение 10 минут и NF в течение 5 минут с помощью электрического всасывающего насоса (GilAir-5: Gilian, США), и концентрацию волокна подтверждали измерением количество волокон (волокно / см 3 ) и массовая концентрация (мг / м 3 ) с использованием соответствующих фильтров.Волокна, собранные на MF с соотношением сторон (отношение длины к ширине) 3 или выше, были измерены с помощью фазово-контрастной микроскопии в соответствии с критериями измерения волокон [14]. Для измерения массовой концентрации (мг / м 3 ) вес собранных по воздуху волокон T60A20 измеряли с помощью электронных весов, сравнивая с весом до отбора пробы.

Вскоре после пятого дня воздействия пять крыс (средний вес 180 г) были умерщвлены (группа вскоре после заражения). По пять крыс также умерщвляли через 1 неделю (группа через 1 неделю), через 2 недели (группа через 2 недели) и через 4 недели (группа через 4 недели) после окончания периода воздействия.Вес тела крыс измеряли один раз в неделю, а их внешний вид и состояние периодически контролировали на предмет любых изменений во время и после периода воздействия.

Измерение волокон в легких крыс

Под анестезией пентобарбиталом (0,15 мг / кг массы тела) крыс умерщвляли кровотечением из брюшной аорты и резецировали их легкие. Резецированные легкие хранили при низкой температуре (-20 ° C). Затем ткани легких размораживали при комнатной температуре, измельчали ​​и лиофилизировали, чтобы снизить их вес до заданного уровня.Вес после лиофилизации рассматривался как вес высушенных легких. Лиофилизированные легкие около 17 мг сжигали в низкотемпературной печи (Plasma Asher LTA-102, Yanaco Corp., Киото) в течение 24 часов.

После сжигания дистиллированная вода, которая была профильтрована с помощью Minisart (Sartorius KK, Tokyo), была добавлена ​​в бутыль для взвешивания, чтобы суспендировать волокна, и волокна были собраны на MF (диаметр пор 0,22 мкм) с использованием всасывающего фильтра и оставлены для хранения. сухой. Высушенный фильтр помещали на предметное стекло и обрабатывали парами ацетона с помощью Quick Fix, делая его прозрачным.На каждом образце фильтра подсчитывали не менее 200 волокон RW с помощью фазово-контрастного микроскопа (BX41, Olympus Corp., Токио). Подсчитывались волокна с соотношением сторон 3 или выше. Win Roof (программное обеспечение для анализа изображений, Mitani Corp., Токио) использовали для получения количества волокон, различая длину (L) как L ≤ 5 мкм, 5 мкм 20 мкм. Среди подсчитанных волокон также была измерена концентрация волокон (L> 5 мкм и ширина <3 мкм) в соответствии с методом Всемирной организации здравоохранения (ВОЗ) (называемым «волокна ВОЗ») [11].Затем количество волокон переводили в количество волокон на вес высушенной легочной ткани. Период полураспада волокон в легких крысы был рассчитан исходя из предположения, что среднее геометрическое значение общего количества волокон, деленное на общий вес легких (волокна / мг) в легких в группе, получавшей вскоре после этого, было 100% [15].

Измерение размеров волокон

Для измерения размеров волокон (длины и ширины) в воздухе и в легких волокна в пределах измеряемого визуального диапазона и с соотношением сторон 3 или выше были измерены с помощью фазово-контрастного микроскопа. при увеличении 400 ×.На каждую крысу подсчитывали не менее 200 волокон 0,36 мкм или более.

Статистический анализ

Были рассчитаны среднее геометрическое и геометрическое стандартное отклонение общего количества волокон по длине и ширине. Кроме того, для измерения длины и ширины для каждой крысы использовали минимум 200 волокон, полученных в двух экспериментах, которые попали в легкие крыс. Затем рассчитывали среднее геометрическое для группы из пяти крыс. Был проведен односторонний дисперсионный анализ и множественные сравнения с помощью теста Шеффе.

Результаты

Мониторинг концентрации волокна в камере экспонирования

В таблице показана концентрация волокна в камере экспонирования в каждом эксперименте. Средние (SD) значения подсчета, полученные цифровым измерителем пыли для первого и второго экспериментов (5 дней каждый), составили 9 257 (182,4) и 10 042 (966) отсчетов / мин. Средние концентрации волокон (SD) в камере экспонирования составляли 75,1 (18,0) и 63,7 (23,3) волокон / см 3 , и аналогично средние массовые концентрации (SD) составляли 30.0 (5,7) мг / м 3 и 30,5 (7,4) мг / м 3 соответственно. На рис. 2 показано частотное распределение (гистограмма) длины и ширины волокон внутри камеры экспонирования, в котором среднее геометрическое (GSD) длины составляло 15,49 (2,02) мкм, а ширина — 2,44 (1,59) мкм.

Таблица 1

Концентрация волокна в камере экспонирования

Первый эксперимент Второй эксперимент
Цифровой измеритель пыли (отсчет / мин) Концентрация волокна (ф / см 3 ) Весовая концентрация (мг / м 3 ) Цифровой измеритель пыли (количество / мин) Концентрация волокна (ф / см 3 ) Весовая концентрация (мг / м 3 )
День 1 (n = 5) 9861 (274) 81.0 (19,5) 30,0 (6,2) 9550 (134) 39,8 (14,3) 24,4 (3,6)
День 2 (n = 5) 9237 (197) 72,8 (5,0) ) 27,0 (7,1) 9824 (585) 77,4 (27,4) 30,8 (4,6)
День 3 (n = 5) 9247 (97) 81,3 (14,9) 33,2 (7,8) 10419 (215) 69,9 (20,1) 37,2 (5,4)
День 4 (n = 5) 9313 (154) 65.0 (26,2) 29,2 (2,3) 9636 (1697) 63,1 (21,6) 24,4 (6,2)
День 5 (n = 5) 9137 (81) 86,8 (12,0) ) 30,4 (4,3) 10851 (458) 68,5 (20,1) 37,2 (5,0)
Среднее (n = 25) 9257 (182,4) 75,1 (18,0) 30,0 (5,7) 10042 (966) 63,7 (23,3) 30,5 (7,4)

a Распределение длины образовавшихся волокон (внутри камеры).b Распределение ширины образовавшихся волокон (внутри камеры)

Скорость отложения внутрилегочных волокон

Общее количество волокон RW, вдыхаемых крысами в течение экспериментального периода, рассчитывали по следующему уравнению:

Рассчитывали объем дыхания у крыс. по следующему уравнению [16]:

Так как средняя масса тела крыс составляла 131 г, дыхательный объем был рассчитан следующим образом:

Концентрация волокон RW в камере экспонирования, рассчитанная в соответствии с правилами Руководства для Измерение рабочей среды [14] было 70.6 волокон / см 3 . Поскольку крысы подвергались воздействию в течение 3 часов ежедневно в течение пяти дней подряд, общее количество вдыхаемых волокон RW было рассчитано следующим образом:

Поскольку общее количество волокон в легких, соответствующее этому количеству, оказалось равным 7,09 × 10 5 Вскоре после воздействия волокна скорость отложения внутрилегочного волокна была рассчитана следующим образом:

Таким образом, скорость отложения внутрилегочного волокна составила 13,7%.

Изменения количества волокон в обоих легких

Таблица и рис.показывают количество волокон RW, накопленных в легких, и их пропорции, исходя из предположения, что значение вскоре после воздействия составляло 100%.

Таблица 2

Число волокон в легких и их пропорции

90.43 (1,13)

Неделя -после группы

-после группы

Группа умерщвленных крыс Всего волокон Волокна короче или равны 5 мкм (L ≤ 5 мкм) Волокна длиннее 5 мкм и короче не менее 20 мкм (5 мкм Волокна длиннее 20 мкм (L> 20 мкм) Волокна ВОЗ
Среднее геометрическое (GSD)% Среднее геометрическое (GSD )% Среднее геометрическое (GSD)% Среднее геометрическое (GSD)% Среднее геометрическое (GSD)%
Вскоре 157 группа 9 100,0 2,12 (1,24) 100,0 6,08 (1,13) 100,0 1,21 (1,14) 100,0 7,09 (1,12) 100,0 100,0 7,42 (1,35) 78,7 2,04 (1,50) 96,3 4,75 (1,34) 78,2 0,54 (1,83) 73,9 5,206

5,206 (1,36)

Группа через 2 недели после 7.68 (1,17) 81,5 2,12 (1,16) 100,3 5,07 (1,21) 83,4 0,42 (1,73) 34,7 5,45 (1,20) 76,9 76,9 5,05 (1,23) a, c 53,6 1,59 (1,48) 74,9 3,13 (1,24) a, c 51,5 0,22 (2,27)

0,22 (2,27)

17,9 3,38 (1,25) а, б, в 47.7

Процент волокон в легких: закрашенный квадрат сразу после группы, полосатый столбик через 1 неделю после группы, пунктирный квадрат через 2 недели после группы, открытый квадрат через 4 недели после группы. Процент, при условии, что значение группы «вскоре после» равно 100%. n = 5, L Длина волокна (мкм)

Среднее значение общего количества волокон в обоих высушенных легких имело тенденцию к снижению в течение периода от вскоре после воздействия до 4 недель после воздействия. Хотя скорость уменьшения количества волокон длиной 5 мкм или меньше (L ≤ 5 мкм), тех, которые длиннее 5 мкм, но короче или равны 20 мкм (5 мкм 5 мкм и W <3 мкм) были низкими в определенный момент, количество волокон в группе через 4 недели было меньше, чем в группе вскоре после (100%).В то же время волокна длиной более 20 мкм (L> 20) имели тенденцию к относительно быстрому уменьшению в течение периода от вскоре после воздействия до 4 недель после воздействия. Множественное сравнение с помощью теста Шеффе показало, что количество общих волокон, с 5 мкм 20 мкм, и волокон ВОЗ в группе через 4 недели после операции значительно уменьшилось по сравнению с группой, получавшей вскоре после операции. (P <0,05).

Период полураспада волокон

Данные, полученные путем построения графика зависимости количества волокон в легких крысы от времени измерения в логарифмической шкале, показывают линейность (т.е.е., экспоненциально) убывает. Таким образом, период полураспада был рассчитан по однокамерной модели, как показано на рис. Периоды полураспада на основе этого расчета составили 32 дня для общего количества волокон, 86 дней для L ≤ 5 мкм, 31 день для 5 мкм 20 мкм и 27 дней для волокон ВОЗ. . Период полураспада более длинных волокон (L> 20 мкм), как правило, короче, чем у более коротких волокон (L ≤ 20 мкм).

Клиренс RW волокон из легких крысы (%), рассчитанный исходя из предположения, что значение группы, полученной вскоре после операции, составляет 100%

Распределение и изменения размера волокон

В таблице показаны изменения длины и ширины внутрилегочных волокон в группах вскоре после и через 1, 2 и 4 недели после, выраженное средним геометрическим, с геометрическим стандартным отклонением в скобках.

Таблица 3

Изменения длины и ширины волокон в легких

Группа вскоре после

2-92

группа недель после
Группа умерщвленных крыс Среднее геометрическое (GSD)
Длина (мкм) Ширина (мкм)

8,58 (1,94) 1,26 (1,43)
Группа через 1 неделю 7,53 (1,87) a 1,18 (1,39) a
7.35 (1,80) a 1,17 (1,37) a
Группа через 4 недели после 6,87 (1,75) a, b 1,14 (1,32) a

29

Средняя длина составила 8,58 мкм в группе, получавшей вскоре после этого, и значительно уменьшилась в трех других группах, составляя 6,87 мкм в группе, получавшей 4 недели после (P <0,05). По сравнению с группой, получавшей через 1 неделю, он значительно снизился в группе через 4 недели (P <0,05).

Средняя ширина составила 1,26 мкм в группе, получавшей вскоре после этого, и значительно уменьшилась в трех других группах, составляя 1,14 мкм в группе через 4 недели (P <0,05).

Обсуждение

Во многих предыдущих эпидемиологических, физико-химических исследованиях и исследованиях на животных было показано, что размер волокна и биоперсистентность асбеста или MMVF являются важными факторами с точки зрения их неблагоприятного воздействия на здоровье, особенно канцерогенности. Что касается вдыхаемых волокон, эти предыдущие исследования показали, что чем тоньше и длиннее волокна, тем канцерогенными они становятся.Кроме того, что касается биоперсистенции, волокна, которые остаются в тканях легких в течение длительного периода времени без разрушения или передачи, считаются более канцерогенными [15]. Говорят, что волокна длиной 20 мкм и более с длительным периодом полураспада имеют тенденцию вызывать фиброз или рак из-за их низкой деградации в живом организме [11, 15]. Биоперсистенция связана с количеством волокон, которые остаются в легких (количество удерживаемых внутрилегочных волокон). Количество удерживаемых внутрилегочных волокон — это количество волокон, которые вошли в легкие и остались, за вычетом объема, выведенного за счет самоочищающего действия легких.Он показывает количество, которое присутствует в легких в результате воздействия. Количество удерживаемой внутрилегочной клетчатки основано на балансе удержания-экскреции: если внутрилегочный удерживаемый объем слишком велик для того, чтобы экскреция могла наверстать упущенное, или если экскреция не работает должным образом, это количество увеличивается, вызывая повреждение легких [11].

Система ингаляционной экспозиции только через нос, используемая в этом эксперименте, является улучшенной версией традиционного типа, в которой субкамера была установлена ​​непосредственно перед камерой экспонирования.У этого подхода есть два преимущества. Во-первых, субкамера может контролировать концентрацию образующихся волокон RW, позволяя подавать заданную концентрацию в камеру экспонирования. Во-вторых, субкамера может отбирать волокна одинакового размера и подавать их в основную камеру экспонирования. Поскольку длинные и толстые волокна, которые крысы не могут вдохнуть, осаждаются в субкамере, в камеру экспонирования можно подавать только вдыхаемые волокна. Этот метод также позволял постоянно генерировать волокна RW с относительно высокой концентрацией в течение определенного периода времени.Следовательно, волокна RW генерировались почти с одинаковой концентрацией, потому что они генерировались почти при целевых концентрациях волокна и изначально предполагаемых массовых концентрациях, хотя были некоторые ежедневные колебания.

Hammad et al. [17] сообщили, что скорость отложения волокон была почти в диапазоне 1-7% у крыс, вскрытых на 5-й день после воздействия волокон в течение 6 часов ежедневно в течение пяти дней подряд, в то время как скорость отложения волокон в нашем исследовании вскоре после конец воздействия после воздействия в течение 3 часов ежедневно в течение пяти дней подряд составил 13.7%, хотя невозможно провести прямое сравнение между двумя исследованиями. В будущих исследованиях мы планируем измерить скорость осаждения при тех же условиях, что и в предыдущем исследовании [17], чтобы результаты можно было сравнить.

Общее количество волокон и количество волокон, подсчитываемое по длине, имеет тенденцию к уменьшению со временем от вскоре после воздействия до конца четвертой недели. В предыдущих исследованиях искусственные волокна стекловидного тела всех размеров уменьшались на 30–50% в течение 30 дней после воздействия [18, 19].Волокна, которые вдыхаются и осаждаются в легких, демонстрируют различные механизмы очистки в зависимости от места выпадения осадка. Волокна, отложенные в бронхиолах, переносятся мукоцилиарными движениями в глотку и выводятся из организма [11, 14]. Предполагается, что волокна, откладывающиеся в альвеолах, выводятся либо (а) путем растворения жидкостью организма или фагоцитоза и переваривания альвеолярными макрофагами (химическая экскреция), либо (б) переносятся в дыхательные пути или лимфатическую ткань альвеолярными макрофагами и разряжаются. из организма (физическое выделение).Фагоцитируется волокно или нет, зависит от его длины. Волокна длиной 20 мкм или короче, по-видимому, фагоцитируются и перевариваются альвеолярными макрофагами [11, 15], тогда как волокна длиной более 20 мкм не могут быть полностью фагоцитированы альвеолярными макрофагами. Предполагается, что эти волокна либо (а) растворяются жидкостью организма, либо (б) складываются в поперечном направлении и измельчаются для сокращения длины, а затем фагоцитируются и перевариваются альвеолярными макрофагами, либо попадают в легочные эпителиальные клетки и переносятся в лимфатическую ткань, таким образом, выделяется из организма [11, 15].Считается, что эти механизмы уменьшают количество волокон. Более того, скорость уменьшения количества волокон с длиной короче 20 мкм замедлилась в группах через 1 и 2 недели. Возможная причина этого явления заключается в том, что волокна длиной более 20 мкм растворялись внеклеточной жидкостью и складывались в поперечном направлении с измельчаемыми волокнами, таким образом увеличивая количество более коротких волокон (короче 20 мкм) и, как следствие, увеличивая скорость образования накопление по ряду показателей, в том числе по общему количеству волокон [11].

Период полураспада был особенно коротким (10 дней) для длинных волокон длиной 20 мкм и более. В предыдущем исследовании сообщалось, что период полураспада составлял 111 дней для волокон ВОЗ из RW (L> 5 мкм и W <3 мкм) и 53 дня для волокон длиной 20 мкм или более [18]. Период полураспада волокон длиннее 20 мкм был короче, чем у волокон других размеров в этом исследовании. Причина, по-видимому, в следующем: количество волокон длиной более 20 мкм быстро уменьшалось, что приводило к короткому периоду полураспада, поскольку они складывались в поперечном направлении и становились короче.Напротив, количество волокон размером 20 мкм или короче не уменьшалось быстро, и, таким образом, период полураспада был больше, потому что более длинные волокна складывались и становились короче, что приводило к увеличению количества волокон на 20 мкм или меньше, даже если количество из более коротких волокон был уменьшен фагоцитозом макрофагами.

Распределение волокон по размерам (длине и ширине) образовавшихся волокон значительно отличалось от распределения волокон в легких. Сообщалось, что волокна, вдыхаемые через нос крысы, обычно имеют длину менее 80 мкм и менее 1.Шириной 5 мкм [20]. Следовательно, разница, наблюдаемая в этом исследовании, может указывать на разделение по размеру из-за вдыхания крысами. После вдыхания волокон в легкие размеры волокон (как по длине, так и по ширине) имеют тенденцию уменьшаться со временем по сравнению с размерами вскоре после воздействия. В предыдущем исследовании RW, проведенном в Дании, средняя длина уменьшилась с примерно 9 мкм вскоре после воздействия до примерно 8 мкм на четвертой неделе [21]. Средняя ширина также уменьшилась с примерно 0,7 мкм вскоре после экспонирования до примерно 0.6 мкм на четвертой неделе [21]. В другом исследовании RW, проведенном в Дании, средняя длина уменьшилась с примерно 11 мкм вскоре после воздействия до примерно 10 мкм на четвертой неделе, а средняя ширина уменьшилась с примерно 0,8 мкм вскоре после воздействия до примерно 0,6 мкм на четвертой неделе [ 18]. Причина уменьшения средней длины и ширины, по-видимому, заключается в следующем: волокна длиной 20 мкм или короче были фагоцитированы альвеолярными макрофагами, как указывалось ранее, в то время как волокна длиной более 20 мкм были либо (а) захвачены в трахее и выведены из нее. тело путем мукоцилиарного движения или (б) растворяется жидкостью тела или складывается, укорачивается и фагоцитируется макрофагами [15].Длина, по-видимому, уменьшилась благодаря тому же механизму уменьшения количества волокон, который описан ранее. Между тем считается, что ширина уменьшилась в результате растворения жидкостью организма.

В другом отчете говорилось, что уменьшение размера клетчатки жидкостью организма было вызвано изменением химического состава [21]. В этом исследовании изменения химического состава MMVF наблюдались в течение года, и предполагалось, что размеры волокон равномерно уменьшаются [21]. При исследовании стекловаты было показано, что оксиды щелочных и щелочноземельных металлов уменьшаются, а химические составляющие волокон растворяются неравномерно.После этого волокна складывались в поперечном направлении и фагоцитировались альвеолярными макрофагами, уменьшая длину и ширину [21].

В этом исследовании мы изучили поведение RW в легких, чтобы оценить его стойкость в легких, с помощью краткосрочного ингаляционного воздействия только через нос на крысах. Строго говоря, невозможно провести прямое сравнение результатов длительного и краткосрочного наблюдения, как это было в настоящем исследовании. Основываясь на признании этого ограничения, настоящее исследование, по-видимому, предполагает безопасность волокон RW.В настоящее время мы проводим эксперимент по долговременному ингаляционному воздействию через нос, чтобы изучить патологические эффекты RW, такие как длительное сохранение RW в легких, канцерогенность и легочный фиброз, и планируем дополнительно оценить безопасность RW, принимая во внимание также результаты настоящего исследования.

Выражение признательности

Мы хотели бы выразить нашу глубочайшую благодарность доктору Хидеки Эндзэ, Департамент профилактической медицины и общественного здравоохранения, Медицинский факультет Университета Китасато, за поддержку, руководство и корректуру рукописи.Мы также хотели бы поблагодарить г-жу Юмико Сугиура, г-жу Ёко Иноуэ, г-жу Юми Комацу, г-жу Мичио Кояма и г-жу Аску Ямамото, факультет профилактической медицины и общественного здравоохранения, Медицинский факультет Университета Китасато, и г-на Сичиро. Миядзаве и г-же Норико Немото, Центр электронной микроскопии, за их дотошные советы и поддержку.

Список литературы

1. Долл Р. Смертность от рака легких у рабочих, работающих с асбестом. Br J Ind Med. 1993; 50: 485–90. [Бесплатная статья PMC] [PubMed]

2. Отдел планирования, Бюро качества воздуха, Министерство окружающей среды ред.Все об асбесте и цеолите. Кавасаки: Японский центр экологической санитарии, 1987: 1–476.

3. Моринага К., Кохьяма Н. Здравоохранение рабочих, работающих с асбестом. Токио: Фонд содействия гигиене труда; 1993. стр. 141–66.

4. Берри Г. Смертность рабочих, аттестованных по медиальным панелям пневмокониоза, как больных асбестозом. Br J Ind Med. 1981; 38: 130–7. [Бесплатная статья PMC] [PubMed] 5. Гормли И.П., Болтон Р.Э., Браун Г.М. и др. Некоторые наблюдения по цитотоксичности in vitro хризотила, полученного методом влажного диспергирования.Перспектива здоровья окружающей среды. 1983; 51: 35–9. [Бесплатная статья PMC] [PubMed]

6. Коши К., Сакабе Х. Влияние асбестовой пыли на культивируемые макрофаги. Ind Health. 1972; 10: 16–23.

7. Отдел планирования Бюро качества воздуха Министерства окружающей среды изд. Все о заменителях асбеста. Кавасаки: Японский центр санитарии окружающей среды 1989: 106–9.

8. МакКоннелл Е.Е., Экстен С., Хестерберг Т.В. и др. Исследования ингаляционной токсикологии двух стекловолоконных материалов и амозитного асбеста на сирийском золотом хомяке.Часть II. Результаты хронического воздействия. Вдыхать токсикол. 1999; 11: 785–835. [PubMed] 9. Дэвис Р. Влияние минеральных волокон на макрофаги. IARC Sci Publ. 1980; 30: 419–25. [PubMed] 10. Браун Р.К., Чемберлен М., Скидмор Дж. В.. Эффекты искусственных минеральных волокон in vitro. Ann Occup Hyg. 1979; 22: 175–9. [PubMed] 11. Искусственные жилые волокна. Монографии МАИР по оценке канцерогенных рисков для человека, вып. 81. Лион: МАИР; 2002. [Бесплатная статья PMC] [PubMed] 12. Кохьяма Н., Танака И., Томита М. и др. Подготовка и характеристика стандартных образцов волокнистых минералов для биологических экспериментов.Ind Health. 1997; 35: 415–32. [PubMed] 13. Кудо Ю., Шибата К., Мики Т. и др. Поведение нового типа минеральной ваты (HT-ваты) в легких после воздействия через нос у крыс. Environ Health Prev Med. 2005; 10: 239–48. [Бесплатная статья PMC] [PubMed]

14. Управление по улучшению окружающей среды, Департамент промышленной безопасности и здоровья, Министерство труда, ред. Минеральная пыль. Руководство по измерению рабочей среды I, Токио: Японская ассоциация по измерению рабочей среды, 2000: 167–80.

15.Хестерберг Т.В., Харт Г.А. Синтетические стекловидные волокна: обзор токсикологических исследований и их влияние на классификацию опасности. Crit Rev Toxicol. 2001; 31: 1–53. [PubMed]

16. Танака И. Отложение и удаление частиц в органах дыхания у мелких животных. J Aerosol Res. 1988. 3: 16–23. (на японском).

17. Хаммад Ю., Дием Дж., Крейгхед Дж. И др. Отложение вдыхаемых искусственных минеральных волокон в легких крыс. Ann Occup Hyg. 1982; 26: 179–87. [PubMed] 18. Хестерберг Т.В., Чейз Дж., Экстен С. и др.Биоперсистенция синтетических волокон стекловидного тела и амозитного асбеста в легких крыс после вдыхания. Toxicol Appl Pharmacol. 1998. 151: 262–75. [PubMed] 19. Массельман Р.П., Мюллер В.С., Истес В. и др. Биоперсистенция искусственных стекловидных волокон и волокон крокидолита в легких крыс после кратковременного воздействия. Перспектива здоровья окружающей среды. 1994; 102 (добавление 5): 139–43. [Бесплатная статья PMC] [PubMed]

20. МакКоннелл Е.Е., Камструп О., Массельман Р.П. и др. Хроническое ингаляционное исследование разделенных по размеру изоляционных волокон из каменной и шлаковой ваты на крысах Fischer 344 / N.Вдыхать токсикол. 1994; 6: 571–614.

21. Хестерберг Т.В., Мюллер В.С., Массельман Р.П. и др. Биоперсистенция искусственных стекловидных волокон и крокидолитового асбеста в легких крыс после вдыхания. Fundam Appl Toxicol. 1996; 29: 267–79. [PubMed]

Действие минеральной ваты на легкие, оцененное с помощью магнитометрии и теста на биоперсистентность | Журнал профессиональной медицины и токсикологии

Настоящее исследование было проведено в соответствии с Этическими рекомендациями для экспериментов на животных, принятыми Наблюдательным советом медицинского факультета Университета Китасато (одобрение No.2004022).

Материалы

В качестве экспериментального материала использовался образец RW производства NC Co., Ltd., Япония, предоставленный Ассоциацией Rock Wool Association, Япония. Флуоресцентная рентгеновская спектроскопия показала, что RW, использованные в настоящем исследовании, химически состоит из SiO 2 39%, CaO 33%, Al 2 O 3 14%, MgO 5,0%, Fe 2 O 3 1,8% и S 0,6%.

Первоначально RW присутствует в виде комков волокон разного размера (длины и ширины).Мы скорректировали размер волокна RW в соответствии с методом Kohyama et al. (1997) для получения образцов волокна подходящего размера для экспериментов на животных [13]. Полученные таким образом волокна RW диспергировали в камере экспонирования и измеряли размеры волокон. Их средняя геометрическая длина (геометрическое стандартное отклонение, GSD) и средняя геометрическая ширина (GSD) составляли 15,49 (2,02) мкм и 2,44 (1,59) мкм, соответственно. Затем, чтобы упростить образование RW в системе ингаляционного воздействия только через нос, сжатые и измельченные волокна RW были смешаны со стеклянными шариками (BZ-02, AS ONE Corporation, Осака, Япония) в весовом соотношении 1 (RW ) до 39 (стеклянные бусины).

Исследование воздействия

Для каждого эксперимента использовали

крыс-самцов Fischer 344 (F344) (возраст от 6 до 10 недель; что специально рекомендовано Протоколом ЕС, 1999 г.). Чтобы акклиматизировать крыс к окружающей среде лаборатории, их сначала поместили в клетки примерно на одну неделю со свободным доступом к воде и пище. Поддерживали температуру 22 ° C и влажность 40% при постоянной подаче свежего отфильтрованного воздуха.

При магнитометрической оценке легких группа воздействия и контрольная группа включали по 6 крыс каждая.Исследуемый материал (волокна RW) подавался воздухом в экспозиционную камеру и воздействовал на нос крыс экспериментальной группы так же, как сообщалось ранее [14–16]. Крысы контрольной группы не подвергались воздействию RW, а подвергались только магнитометрии легких.

В тесте на биоперсистентность использовалось 12 крыс на эксперимент, эксперимент повторяли дважды, а при патологической оценке использовали 12 крыс (всего 36 крыс). Крыс подвергали воздействию волокон RW непрерывно в течение 6 часов ежедневно в течение 5 дней подряд.Каждый день в течение экспериментального периода крыс, закрепленных в верхних держателях для крыс в основной камере, заменяли крысами в нижних держателях для крыс, меняя положения между верхними и нижними держателями для крыс.

Магнитометрия легких

На рисунке 1 показан общий вид устройства для магнитометрической оценки легких. Магнитометрическую оценку легких проводили у 6 крыс в каждой из экспозиционных групп RW и в контрольной группе в соответствии с методом, описанным Aizawa et al. (1991). Через день после воздействия крыс анестезировали путем вдыхания диэтилового эфира.В этом исследовании тетраоксид трижелеза (Toda Kogyo Corp., Токио, Япония) использовался в качестве магнитных частиц со средним геометрическим размером частиц 0,26 мкм.

Рисунок 1

Устройство для магнитометрической оценки легких .

крыс, подвергшихся воздействию RW, и контрольных крыс были интратрахеально катетеризованы и инстиллированы 3 мг тетраоксида трижелеза, суспендированного в 0,2 мл физиологического раствора, через день после воздействия RW. Затем каждую крысу анестезировали нембуталом внутрибрюшинно (при 0.15 мл / 100 г массы тела). Намагничивание в течение одной секунды проводили на грудной клетке крысы при плотности магнитного потока 50 мТл с последующим 40-минутным измерением напряженности остаточного магнитного поля после намагничивания с помощью флюксметра типа феррозонда. Аппарат работал таким образом, что стол для образцов проходил над зондом каждые 12 секунд. Намагничивание и измерение остаточного магнитного поля легкого проводили через 1, 3, 14 и 28 дней после воздействия RW. Измеряя остаточное магнитное поле в течение 40 минут после намагничивания, можно получить кривую, показывающую постоянную затухания.Кроме того, измерение остаточной напряженности магнитного поля в течение 2 минут после намагничивания дало почти линейную кривую после логарифмического преобразования. Точка, в которой эта кривая пересекалась с осью y, была обозначена B 0 . При выражении остаточного магнитного поля сразу после намагничивания как B 0 и постоянной спада как λ, остаточное магнитное поле после t секунд прекращения внешнего намагничивания можно представить формулой B = B 0 e -λt , и, таким образом, постоянная затухания (λ) была рассчитана по этой формуле.Кроме того, рассчитывалась максимальная напряженность остаточного магнитного поля в каждый день измерения (t = 0 — минутное значение), при этом значение в день 0 принималось за 100%, на основании чего были построены кривые зазора.

Тест на биоперсистентность

Через один, 3, 14 и 28 дней после воздействия 6 крыс были умерщвлены один раз (1D группа, 3D группа, 14D группа и 28D группа, соответственно). Крыс взвешивали один раз в неделю. Во время и после воздействия за крысами периодически наблюдали на предмет любых изменений их внешнего вида или состояния.

Под анестезией нембуталом крыс умерщвляли путем обескровливания брюшной аорты и резецировали их легкие. Резецированные легкие подвергали озолению в низкотемпературном ашере (Plasma Asher, LTA-102, Yanaco Corp., Киото, Япония) в течение 24 часов.

Озоленный образец, содержащий волокна, суспендировали в дистиллированной воде, которая была профильтрована с помощью шприцевого фильтра Minisart (Sartotius K. K., Токио, Япония) во взвешивающем сосуде. Волокна собирали на фильтре Nuclepore (диаметр пор 0,01 мм).2 мкм), используя всасывающий фильтр, и дали высохнуть. На каждую крысу подсчитывали не менее 400 волокон с использованием сканирующего электронного микроскопа (BX41, Olympus Corp., Токио, Япония) при увеличении от × 500 до × 2000. Подсчитывались волокна, имеющие соотношение сторон (отношение длины к ширине) 3 или больше. Количество волокон в каждой из трех категорий длины (L) (L ≤ 5, 5 20) было получено в соответствии с правилами подсчета волокон [17]. Среди подсчитанных волокон также учитывались волокна Всемирной организации здравоохранения (ВОЗ), имеющие длину более 5 мкм и ширину менее 3 мкм [2].Затем количество волокон переводили в количество волокон на вес высушенного легкого. Период полураспада волокон в легких крысы рассчитывали, предполагая, что среднее геометрическое общее количество волокон / общий вес легких (волокна / мг) в легких в группе 1D составляло 100% [3].

Кроме того, размер волокна (длина и ширина) измеряли при увеличении от × 500 до × 2000. В это измерение были включены волокна, имеющие длину 0,47 мкм или больше и ширину 0,05 мкм или больше.

Патологическая оценка

Каждую из трех крыс умерщвляли через 1, 3, 14 и 28 дней после воздействия RW.Их легкие были изолированы и зафиксированы в формалине с последующим наблюдением за легочной тканью путем окрашивания гематоксилином и эозином с использованием просвечивающего электронного микроскопа.

Статистический анализ

При магнитометрической оценке легких рассчитывали средние арифметические значения и стандартные отклонения по данным, полученным для подвергнутой воздействию RW и контрольной группы по 6 крыс в каждой. Впоследствии был проведен t-тест Стьюдента.

В тесте на биостойкость были рассчитаны среднее геометрическое и геометрическое стандартное отклонение для общего количества, длины и ширины волокон.Для длины и ширины в двух экспериментах подсчитывали не менее 400 волокон в легких на одну крысу и вычисляли среднее геометрическое значение для 6 крыс. Был проведен односторонний дисперсионный анализ и проведен тест множественного сравнения Шеффе.

Минеральная вата — угроза здоровью, сопоставимая с асбестом | London Business News

Возможно, вы этого не знаете, но, скорее всего, у вас дома есть минеральная вата. Материал официально известен как искусственное стекловолокно (MMVF), но его чаще называют «каменная вата», «стекловата», «минеральная вата» или даже под одним из наиболее известных торговых марок. , Rockwool.Велика вероятность, что у вас дома будет изоляция из минеральной ваты. Домовладельцы и строительные рабочие, вероятно, обращались с ним во время строительных или ремонтных работ, устанавливая или удаляя минеральную вату в качестве изоляции. Но что общественность знает о здоровье и рисках, связанных с этим продуктом?

История, объясняющая, почему во многих домах используется минеральная вата. По сути, это было фактически заменой асбесту после того, как это вещество было запрещено.Долгое время асбест использовался в качестве изоляционного материала. Первые свидетельства опасности работы с асбестом появились в больнице Чаринг-Кросс в Лондоне в 1900 году, когда во время патологоанатомического обследования молодого человека, который умер от легочного фиброза после 14 лет работы на асбестовой текстильной фабрике. Доктор Х. Монтегю Мюррей обнаружил следы асбеста в легких жертвы. Инспектор фабрик в Великобритании впоследствии включил асбест в список вредных промышленных веществ в 1902 году.Асбестовая промышленность преуменьшала риски и успешно защищалась почти целое столетие. Поскольку асбест был запрещен в большинстве стран в 1990-х годах, минеральная вата фактически превратилась в заменяющий материал.

Опасения усиливаются, поскольку становится очевидным, что риски для здоровья, связанные с минеральной ватой, сопоставимы с рисками, связанными с асбестом. Доктор Марджолейн Дрент, профессор интерстициальных заболеваний легких на факультете фармакологии и токсикологии Маастрихтского университета, Нидерланды, заявил: «Воздействие волокон стекловаты и каменной ваты можно сравнить с действием асбеста.В прошлом мы не знали, что асбест очень опасен. Результаты воздействия волокон на стекловату и минеральную вату только сейчас видны, поэтому мы должны относиться к этому осторожно ». Похоже, что после запрета асбеста в 1999 году мы выбрали замену минеральной вате, которая столь же смертельна. Доктор Дрент добавил: «Дело в том, что эти вещества вредны, но люди не осознают этого в достаточной степени, и это то, о чем мы должны беспокоиться. Слишком легко признать, что «у нас есть заменитель асбеста».Но замена может оказаться не такой хорошей, как мы думали вначале, этому факту уделяется недостаточное внимание ».

Каким образом было разрешено заменить запрещенный асбест материалом, который имеет такой же уровень угрозы здоровью? Там тоже есть своя история. Минеральная вата первоначально была классифицирована Всемирной организацией здравоохранения (ВОЗ) и Международным агентством по изучению рака (IARC) как канцерогенная и опасная для человека. Затем производители минеральной ваты изменили состав своего продукта, который затем подвергся дальнейшим испытаниям.В 2002 году минеральная вата была признана канцерогеном. Однако теперь выяснилось, что испытанный продукт отличался от имеющегося в продаже, поскольку было удалено важное «связующее». К Европейскому химическому агентству (ECA), базирующемуся в Хельсинки, обращаются с призывом провести повторные испытания проданного продукта.

Конечно, это повторное тестирование должно состояться. Кажется возможным, что минеральная вата в конечном итоге может столкнуться с запретом, аналогичным тому, который был введен в отношении ее родственника, асбеста.Между тем, что мы можем сделать, чтобы защитить домовладельцев и строителей, которые могут устанавливать, удалять или утилизировать минеральную вату? Первым шагом является необходимость обязательного использования строителями соответствующего защитного снаряжения, такого как маски для лица. Также должна быть обязательной крупная и четкая маркировка продуктов, чтобы пользователи могли быть проинформированы о рисках для здоровья, с которыми они сталкиваются, и получили инструкции о том, как начать защищаться.

На то, чтобы запретить асбест, потребовалось столетие после того, как впервые было обнаружено, что он опасен.Эта задержка означала, что ей подверглось гораздо больше жертв. Нельзя позволить истории повторяться. Мы не можем мириться с такой задержкой с устранением угрозы здоровью, которую представляет минеральная вата.

Рекомендации по установке

Раздражение или «зуд»

Некоторые люди испытывают временный дискомфорт (или зуд) при работе с минеральной ватой. Этот зуд является механической реакцией на грубые волокна и обычно проходит вскоре после прекращения воздействия. Некоторые также могут испытывать раздражение верхних дыхательных путей или глаз, подобное тому, которое вызывается многими другими формами пыли или инородных тел.Эти механические раздражающие эффекты полностью отличаются от «химических» раздражителей, которые обычно оцениваются как «опасные вещества» в соответствии с Директивой ЕС 1272/2008.

Директива Европейской комиссии по опасным веществам устанавливает критерии классификации раздражения, в результате чего ко всей минеральной вате была применена предупредительная классификация «Раздражает кожу» (R38). Недавно научные эксперты Европейской комиссии согласились с тем, что кратковременный эффект механического зуда, иногда наблюдаемый при обращении с продуктами из минеральной ваты и их использовании, не является эффектом химического раздражения, как того требует классификация R38.

Все производители минеральной ваты предоставляют полное и подходящее руководство по упаковке продукта и помогают пользователям предотвратить или минимизировать любой возможный зуд. Людям, испытывающим дискомфорт или имеющим проблемы с кожей, следует надевать перчатки или другую подходящую защиту. Следует носить свободную одежду, избегая стягивания запястий и шеи. При работе с изделиями выше уровня плеч следует надевать защитные очки.

Результаты интенсивных исследований воздействия на человека, как на производстве, так и на производстве, не показывают связи между воздействием минеральной ваты волокна и повышенным риском респираторных заболеваний (напр.грамм. бронхит). Нет медицинских доказательств того, что минеральная вата вызывает астму. Хотя минеральная вата не вызывает респираторных заболеваний, общепринято считать, что пыль в любой форме может усугубить существующее состояние.

Любые вдыхаемые волокна не представляют опасности для здоровья, поскольку они легко удаляются или растворяются организмом (биологически растворимые). Тем не менее, ряд организаций отметили, что всегда разумно сводить к минимуму воздействие любой формы пыли на рабочем месте.Промышленность на протяжении многих лет предоставляет соответствующие рекомендации, поддерживает и одобряет законодательные органы, которые дают здравый смысл для ограничения воздействия вредной пыли.

Рекомендации по установке

Как уже упоминалось, наш продукт не классифицируется как опасный, хотя механическое воздействие волокон, контактирующих с кожей, может вызвать временный зуд. Поэтому мы даем рекомендации по обращению с нашим продуктом, например пиктограммы на упаковке продукта. Ниже приводится объяснение пиктограмм, которые являются частью рекомендаций по установке, и их значения.

Оценка последствий для здоровья, связанных с обработкой и использованием изоляционных материалов из натуральной шерсти

Основные моменты

Доступные исследования воздействия на текстильные фабрики по производству шерсти приводят к чрезмерному обобщению.

Основным риском образования органической пыли являются вторичные взрывы, хотя для шерсти это редкость.

Необходимы исследования, чтобы подтвердить, снижают ли волокна / пыль до эндотоксинов риск рака.

Влияние синтетического волокна на здоровье невелико, но исследования временами противоречат друг другу.

Реферат

В этом документе обсуждаются возможные последствия для здоровья, связанные с частицами пыли, выделяемыми при производстве нетканого изоляционного материала на основе овечьей шерсти. Такая изоляция может заменить традиционные синтетические изоляционные материалы, используемые в крышах, полостях стен и т. Д. Обзор литературы, касающейся органической пыли в целом и волокон овечьей шерсти, суммирует характер воздействия пыли, токсикологические пути и опасности, связанные с вдыханием и опасностью взрыва.В этом документе подчеркивается необходимость проведения дополнительных исследований, чтобы не допустить чрезмерного обобщения потенциальных легочных и канцерогенных рисков в различных отраслях промышленности. Показано, что переменные, существующие в разных отраслях, такие как использование различных типов шерсти, процессов и добавок, оказывают различное воздействие на здоровье. В последнем разделе документа поднятые вопросы здоровья сравниваются с теми, которые были подробно задокументированы для промышленности по производству минеральной и стекловаты.

Сокращения

WHO

Всемирная организация здравоохранения

BOHS

Британское общество гигиены труда

TLV

Пороговые значения

HSE

Руководство по охране здоровья и безопасности

FEV 1

Объем принудительного выдоха за 1 секунду

OSHA

Безопасность и охрана труда HSPP

Партнерская программа по охране здоровья и безопасности

Ключевые слова

Шерсть

Натуральное волокно

Изоляция

Пыль

Здоровье

Воздействие

Рекомендуемые статьи Цитирующие статьи (0)

Copyright © 2014 Elsevier Ltd.Все права защищены.

Рекомендуемые статьи

Ссылки на статьи

Минеральная вата, опасная для здоровья — Gearspace.com

Только что построил и установил 4 басовых ловушки высотой 240 см, наполненные стекловолокном, покрытым тканью. С того момента, как я их установил, мой рот теперь постоянно сухой и кажется «песчаным», губы кажутся «пыльными», в уголках глаз выделяется много зернистой массы, в носу кажется заложенность, кожа кажется сухой и пыльной. , и везде есть что-то вроде очень тонкого слоя, похожего на пыль.Даже на моей одежде, шторах, полу и поверхностях стола. Если я подниму этот слой, через пару часов он станет такой же толстой. Это квартира, площадь комнаты ~ 20 кв.м.

Мне действительно интересно узнать о предполагаемой опасности минерального волокна.